
�e disjoint qualifier
Eric Lengyel, December 4, 2019

lengyel@terathon.com

�is proposal introduces a new type qualifier called disjoint that is intended as an alternative to the restrict
qualifier defined by the C language. Whereas the restrict qualifier identifies a property of a pointer to an object, the
disjoint qualifier identifies a property of an object’s storage in much the same way that const and volatile do.
�is distinction allows use of the disjoint qualifier in many situations where similar use of the restrict qualifier
would not be possible in idiomatic C++, as described below.

Inverse qualifier
�e disjoint qualifier works in the opposite way that the const and volatile qualifiers work. Whereas const and
volatile indicate properties of storage that are present, disjoint indicates a property of storage that is absent.
Specifically, the disjoint qualifier means that storage does not have the property that it can be aliased. �is means
that a type is actually less qualified when the disjoint qualifier is specified than it is otherwise. Because implicit
qualification conversions go from less qualified to more qualified, the disjoint qualifier can always be removed in
the same contexts in which the const and volatile qualifiers can be added. For example:

int *a;

const int *c;

disjoint int *d;

...

const int *p = a; // OK: const qualifier added
disjoint int *q = a; // error: disjoint qualifier cannot be added
int *r = c; // error: const qualifier cannot be removed
int *s = d; // OK: disjoint qualifier can be removed

To be consistent with const and volatile, it would be necessary to introduce a qualifier possibly named alias that
must be specified for every object that could be referenced through multiple paths. Of course, this would be horribly
impractical due to it breaking backwards compatibility with almost all existing code. �e only choice is to introduce
the disjoint qualifier with inverse semantics.

Note that a noalias qualifier was proposed by the X3J11 committee in the 1980s at the same time that the const and
volatile qualifiers were introduced to the C language. �e noalias qualifier had the same intended meaning as the
disjoint qualifier, but it still worked by making a type more qualified. �is would have allowed the noalias
qualifier to be implicitly added to a type at any time, which is technically unsound. Because the disjoint qualifier
makes a type less qualified, it does not suffer from the same problems that prevented noalias from ever seeing the
light of day.

Type safety
�e restrict qualifier can be implicitly added to a pointer at any time. Consider the following code:

void f(int *restrict a, int *restrict b)

{

 // Storage referenced by a and b assumed disjoint here
}

int *p, *q;

...

f(p, q); // OK

�e pointers a and b are implicitly made restricted through the call to the function f(), but there is no safety
mechanism that requires pointers to truly disjoint storage to be passed in through the arguments p and q. Consider the
case when f() belongs to some external API, and the restrict qualifiers are added to the function declaration during

a version update. When the calling code is recompiled, no error occurs even though the requirements on the arguments
have changed substantially. �is can cause the sudden appearance of devastating and difficult-to-find bugs.

Now consider code using the disjoint qualifier:

void f(disjoint int *a, disjoint int *b)

{

 // Storage referenced by a and b assumed disjoint here
}

int *p, *q;

...

f(p, q); // error: p and q must point to disjoint objects

In this case, pointers to non-disjoint storage cannot be passed to the function f() because the disjoint qualifier
cannot be implicitly added. �e disjoint qualifier makes good use of the type system to provide the necessary safety.
Had the disjoint qualifiers in the declaration of f() been added during an API version update, then the calling code
would suddenly fail to compile, highlighting the exact cause of the problem.

Function overloading
Because the restrict qualifier applies to a pointer (or reference), and not to the storage it refers to, functions cannot
be overloaded in a such way that aliasing and non-aliasing versions can both be provided. For example, consider this
code:

void Multiply(const Matrix *m1, const Matrix *m2, Matrix *result);

void Multiply(const Matrix *m1, const Matrix *m2, Matrix *restrict result);

�e second function declaration is equivalent to the first, and it is not a separate overload. �e disjoint qualifier,
however, allows proper overloading because it applies to the actual storage:

void Multiply(const Matrix *m1, const Matrix *m2, Matrix *result);

{

 // Possible aliasing between result and m1 or m2 must be assumed here
}

void Multiply(const Matrix *m1, const Matrix *m2, disjoint Matrix *result);

{

 // The compiler can assume that result does not alias m1 or m2 here
}

�rough this mechanism, a program can supply one version of a function that must assume that aliasing can occur and
a second version of a function that can assume no aliasing and thus achieve greater optimization. Templates could be
used to generate both versions of the function from the same source code, relying on the compiler to generate better
object code in the disjoint case. �e second version of the function would be selected only when the caller explicitly
passes a disjoint object to it. It could not be selected by accident.

Non-static member functions
�e disjoint qualifier can be applied to a non-static member function just as const and volatile can. �is has the
effect of making the object *this disjoint inside the body of that member function. �e restrict qualifier is
inconsistent in this regard because it applied to the pointer value this, as illustrated in the following code.

struct X {

 void f();

 void f() const; // const is applied to *this
 void f() volatile; // volatile is applied to *this
 void f() disjoint; // disjoint is applied to *this
 void f() restrict; // restrict is applied to this, which is inconsistent
 // error: cannot overload f() with f() restrict
};

Furthermore, member functions cannot be overloaded by adding the restrict qualifier as they can with the const
and volatile qualifiers. �e ability to overload member functions by adding the disjoint qualifier makes it possible
for a different member function to be selected when the object for which it is invoked is a disjoint object.

Disjoint from birth
Because the disjoint qualifier cannot be added to a type, an existing non-disjoint object can never be made disjoint.
An object can be disjoint only if it has always been disjoint, starting at the beginning of its lifetime. Objects with
static, thread, or automatic storage duration must be explicitly declared disjoint if they are to ever enjoy the benefit
of the disjoint qualification. For example, the possibly more optimal version of the Multiply() function described
under “Function overloading” above could be invoked using the following code:

Matrix a, b;

disjoint Matrix product;

...

Multiply(&a, &b, &product);

As described below, all objects with dynamic storage duration begin their lives as disjoint objects.

Heap allocation
Newly allocated memory is always disjoint. �e new operator is modified so that it returns a pointer to an object (or
array thereof) having the disjoint-qualified version of the type to which it is applied. Because the disjoint qualifier
can always be implicitly removed by a qualification conversion, backwards compatibility is guaranteed. For example:

disjoint T *object = new T(); // OK. The new expression has type disjoint T *
T *object = new T(); // Also OK. The disjoint qualifier can be implicitly removed

�e return type of overloaded new operators remains “pointer to void” and is not changed to “pointer to disjoint
void” so that backwards compatibility is maintained. �e disjoint qualifier is added automatically after allocation
and before object construction.

�e C memory allocation functions (such as malloc()) are modified so that they return “pointer to disjoint void”.

Constructors and destructors
�e disjoint qualifier is always applied to an object under construction or destruction. It makes sense to do this
because at the time when construction begins, the object couldn’t possibly be referenced through any path other than
the this pointer. �us, the type of this can safely and correctly be qualified as disjoint. Similarly, no other valid
reference to an object under destruction can possibly exist, so such an object can always be considered disjoint. �is
is illustrated by the following code:

struct X

{

 X()

 {

 // Inside the body of the constructor, *this has type disjoint X
 }

 ~X()

 {

 // Inside the body of the destructor, *this has type disjoint X
 }

};

�e implicit addition of the disjoint qualifier to objects under construction and destruction is similar to the implicit
removal of the const qualifier that already happens at the same time.

Temporary objects
Temporary objects are always disjoint because they cannot initially be accessed through multiple paths. For example:

struct X {...}

void f(X& a);

void f(disjoint X& a);

X x = X();

f(x); // Calls f(X&)
f(X()); // Calls f(disjoint X&)

Overloaded operators that would often return temporary objects should add the disjoint to their return value. For
example:

disjoint String operator +(const String& a, const String& b);

Literals
All literal values are automatically disjoint. �is allows initializations such as the following.

const disjoint char text[] = "string";

�is also allows a literal value to be passed by reference to a function expecting a disjoint-qualified argument.

Modifications to the standard
�e following are the changes that would need to be made to the C++17 standard to incorporate the disjoint qualifier.
�is is not an exhaustive list, but it aims to highlight the most important and consequential changes. In particular, there
are many instances that have been omitted where “cv” would simply need to be changed to “cvd”.

5.11 Keywords [lex.key]
...

Table 5 — Keywords

alignas

alignof

asm

auto

bool

break

case

catch

char

char16_t

char32_t

class

const

constexpr

const_cast

continue

decltype

default

delete

disjoint

do

double

dynamic_cast

else

enum

explicit

export

extern

false

float

for

friend

goto

if

inline

int

long

mutable

namespace

new

noexcept

nullptr

operator

private

protected

public

register

reinterpret_cast

return

short

signed

sizeof

static

static_assert

static_cast

struct

switch

template

this

thread_local

throw

true

try

typedef

typeid

typename

union

unsigned

using

virtual

void

volatile

wchar_t

while

5.13.2 Integer literals [lex.icon]
...
2 �e type of an integer literal is the disjoint-qualified version of the first of the corresponding list in Table 7 in which
its value can be represented.

...

5.13.3 Character literals [lex.ccon]
...
2 A character literal that does not begin with u8, u, U, or L is an ordinary character literal. An ordinary character literal
that contains a single c-char representable in the execution character set has type disjoint char, with value equal
to the numerical value of the encoding of the c-char in the execution character set. An ordinary character literal that
contains more than one c-char is a multicharacter literal. A multicharacter literal, or an ordinary character literal
containing a single c-char not representable in the execution character set, is conditionally-supported, has type
disjoint int, and has an implementation-defined value.
3 A character literal that begins with u8, such as u8'w', is a character literal of type disjoint char, known as a UTF-
8 character literal. �e value of a UTF-8 character literal is equal to its ISO 10646 code point value, provided that the
code point value is representable with a single UTF-8 code unit (that is, provided it is in the C0 Controls and Basic
Latin Unicode block). If the value is not representable with a single UTF-8 code unit, the program is ill-formed. A
UTF-8 character literal containing multiple c-chars is ill-formed.
4 A character literal that begins with the letter u, such as u'x', is a character literal of type disjoint char16_t. �e
value of a char16_t character literal containing a single c-char is equal to its ISO 10646 code point value, provided
that the code point is representable with a single 16-bit code unit. (�at is, provided it is a basic multi-lingual plane
code point.) If the value is not representable within 16 bits, the program is ill-formed. A char16_t character literal
containing multiple c-chars is ill-formed.
5 A character literal that begins with the letter U, such as U'y', is a character literal of type disjoint char32_t. �e
value of a char32_t character literal containing a single c-char is equal to its ISO 10646 code point value. A
char32_t character literal containing multiple c-chars is ill-formed.
6 A character literal that begins with the letter L, such as L'z', is a wide-character literal. A wide-character literal has
type disjoint wchar_t.24 �e value of a wide-character literal containing a single c-char has value equal to the
numerical value of the encoding of the c-char in the execution wide-character set, unless the c-char has no
representation in the execution wide-character set, in which case the value is implementation-defined. [Note: �e type
wchar_t is able to represent all members of the execution wide-character set (see 6.9.1). — end note] �e value of a
wide-character literal containing multiple c-chars is implementation-defined.

5.13.4 Floating literals [lex.fcon]
...
1 ... �e type of a floating literal is disjoint double unless explicitly specified by a suffix. �e suffixes f and F
specify disjoint float, the suffixes l and L specify disjoint long double. ...

5.13.5 String literals [lex.string]
...
8 Ordinary string literals and UTF-8 string literals are also referred to as narrow string literals. A narrow string literal
has type “array of n const disjoint char”, where n is the size of the string as defined below, and has static storage
duration (6.7).

...
10 A string-literal that begins with u, such as u"asdf", is a char16_t string literal. A char16_t string literal has type
“array of n const disjoint char16_t”, where n is the size of the string as defined below; it is initialized with the
given characters. A single c-char may produce more than one char16_t character in the form of surrogate pairs.
11 A string-literal that begins with U, such as U"asdf", is a char32_t string literal. A char32_t string literal has type
“array of n const disjoint char32_t”, where n is the size of the string as defined below; it is initialized with the
given characters.

12 A string-literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type “array of
n const disjoint wchar_t”, where n is the size of the string as defined below; it is initialized with the given
characters.

...

5.13.6 Boolean literals [lex.bool]
...
1 �e Boolean literals are the keywords false and true. Such literals are prvalues and have type disjoint bool.

5.13.7 Pointer literals [lex.nullptr]
...
1 �e pointer literal is the keyword nullptr. It is a prvalue of type std::nullptr_t. [Note: std::nullptr_t is a
distinct type that is neither a pointer type nor a pointer to member type; rather, a prvalue of this type is a disjoint null
pointer constant and can be converted to a null pointer value or null member pointer value. See 7.11 and 7.12. — end
note]

6.9.3 CVD-qualifiers [basic.type.qualifier]
1 A type mentioned in 6.9.1 and 6.9.2 is a cvd-unqualified type. Each type which is a cvd-unqualified complete or
incomplete object type or is void (6.9) has threeseven corresponding cvd-qualified versions of its type: a const-
qualified version, a volatile-qualified version, and a const-volatile-qualified version, a disjoint-qualified version, a
const-disjoint-qualified version, a volatile-disjoint-qualified version, and a const-volatile-disjoint-qualified version.
�e type of an object (4.5) includes the cvd-qualifiers specified in the decl-specifier-seq (10.1), declarator (Clause
11), type-id (11.1), or new-type-id (8.3.4) when the object is created.

— A const object is an object of type const T or a non-mutable subobject of such an object.

— A volatile object is an object of type volatile T, a subobject of such an object, or a mutable subobject of
a const volatile object.

— A const volatile object is an object of type const volatile T, a non-mutable subobject of such an object,
a const subobject of a volatile object, or a non-mutable volatile subobject of a const object.

— A disjoint object is an object of type disjoint T or a subobject of such an object.

— A const disjoint object is an object of type const disjoint T, a non-mutable subobject of such an object,
a const subobject of a disjoint object, or a disjoint subobject of a const object.

— A volatile disjoint object is an object of type volatile disjoint T, a subobject of such an object, a volatile
subobject of a disjoint object, a disjoint subobject of a volatile object, or a mutable subobject of a const
volatile disjoint object.

— A const volatile disjoint object is an object of type const volatile disjoint T, a non-mutable subobject
of such an object, a const subobject of a volatile disjoint object, a non-mutable volatile subobject of a const
disjoint object, a disjoint subobject of a const volatile object, a const volatile subobject of a disjoint object, a
const disjoint subobject of a volatile object, or a non-mutable volatile disjoint subobject of a const object.

�e cvd-qualified or cvd-unqualified versions of a type are distinct types; however, they shall have the same
representation and alignment requirements (6.11).
2 A compound type (6.9.2) is not cvd-qualified by the cvd-qualifiers (if any) of the types from which it is compounded.
Any cvd-qualifiers applied to an array type affect the array element type (11.3.4).
3 See 11.3.5 and 12.2.2.1 regarding function types that have cvd-qualifiers.
4 �ere is a partial ordering on cvd-qualifiers, so that a type can be said to be more cvd-qualified than another. Table
10 shows the relations that constitute this ordering. [Note: �e presence of the const or volatile qualifier causes a

type to be more cvd-qualified, but in the opposite sense, the absence of the disjoint qualifier causes a type to be
more cvd-qualified. — end note]
5 In this International Standard, the notation cvd (or cvd1, cvd2, etc.), used in the description of types, represents an
arbitrary set of cvd-qualifiers, i.e., one of {const}, {volatile}, {const, volatile}, {disjoint}, {const,
disjoint}, {volatile, disjoint}, {const, volatile, disjoint}, or the empty set. For a type cvd T, the top-
level cvd-qualifiers of that type are those denoted by cvd. [Example: �e type corresponding to the type-id const
int& has no top-level cvd-qualifiers. �e type corresponding to the type-id volatile int * const has the top-
level cvd-qualifier const. For a class type C, the type corresponding to the type-id void (C::* volatile)(int)
const has the top-level cvd-qualifier volatile. — end example]
6 Cvd-qualifiers applied to an array type attach to the underlying element type, so the notation “cvd T”, where T is an
array type, refers to an array whose elements are so-qualified. An array type whose elements are cvd-qualified is also
considered to have the same cvd-qualifications as its elements. [Example:

typedef char CA[5];

typedef const char CC;

CC arr1[5] = { 0 };

const CA arr2 = { 0 };

�e type of both arr1 and arr2 is “array of 5 const char”, and the array type is considered to be const-qualified.
— end example]

Table 10 — Relations on const, and volatile, and disjoint

no cvd-qualifier < const

no cvd-qualifier < volatile

no cvd-qualifier < const volatile

const < const volatile
volatile < const volatile
disjoint < no cvd-qualifier

const disjoint < const

volatile disjoint < volatile

const volatile disjoint < const volatile

6.10 Lvalues and rvalues [basic.lval]
...
6 Unless otherwise indicated (8.2.2), a prvalue shall always have complete type or the void type. A glvalue shall not
have type cvd void. [Note: A glvalue may have complete or incomplete non-void type. Class and array prvalues can
have cvd-qualified types; other prvalues always have cv-unqualified non-const, non-volatile, disjoint types. See Clause
8. — end note]

...

7.1 Lvalue-to-rvalue conversion [conv.lval]
1 A glvalue (6.10) of a non-function, non-array type T can be converted to a prvalue.57 If T is an incomplete type, a
program that necessitates this conversion is ill-formed. If T is a non-class type, the type of the prvalue is the cv-
unqualified non-const, non-volatile version of disjoint T (6.9.3). Otherwise, the type of the prvalue is T.58

...

7.4 Temporary materialization conversion [conv.rval]
1 A prvalue of type T can be converted to an xvalue of type disjoint T. �is conversion initializes a temporary
object (15.2) of type disjoint T from the prvalue by evaluating the prvalue with the temporary object as its result
object, and produces an xvalue denoting the temporary object. T shall be a complete type. [Note: If T is a class type
(or array thereof), it must have an accessible and non-deleted destructor; see 15.4. — end note]

[Example:

struct X { int n; };

int k = X().n; // OK, X() prvalue is converted to xvalue

— end example]

7.5 Qualification conversions [conv.qual]
1 A cvd-decomposition of a type T is a sequence of cvdi and Pi such that T is

 “cvd0 P0 cvd1 P1 · · · cvdn−1 Pn−1 cvdn U” for n > 0,

where each cvdi is a set of cvd-qualifiers (6.9.3), and each Pi is “pointer to” (11.3.1), “pointer to member of class Ci
of type” (11.3.3), “array of Ni”, or “array of unknown bound of” (11.3.4). If Pi designates an array, the cvd-qualifiers
cvdi+1 on the element type are also taken as the cvd-qualifiers cvdi of the array. [Example: �e type denoted by the
type-id const int ** has two cvd-decompositions, taking U as “int” and as “pointer to const int”. — end
example] �e n-tuple of cvd-qualifiers after the first one in the longest cvd-decomposition of T, that is, cvd1, cvd2, . .
. , cvdn, is called the cvd-qualification signature of T.
2 Two types T1 and T2 are similar if they have cvd-decompositions with the same n such that corresponding Pi
components are the same and the types denoted by U are the same.
3 A prvalue expression of type T1 can be converted to type T2 if the following conditions are satisfied, where cvdi

j
denotes the cvd-qualifiers in the cvd-qualification signature of Tj:60

— T1 and T2 are similar.

— For every i > 0, if const is in cvdi
1 then const is in cvdi

2, and similarly for volatile.

— For every i > 0, if disjoint is not in cvdi
1 then disjoint is not in cvdi

2.

— If the cvdi
1 and cvdi

2 are different, then const is in every cvdk
2 for 0 < k < i and disjoint is not in every

cvdk
2 for 0 < k < i.

[Note: If a program could assign a pointer of type T** to a pointer of type const T** (that is, if line #1 below were
allowed), a program could inadvertently modify a const object (as it is done on line #2). For example,

int main() {

 const char c = ’c’;
 char* pc;

 const char** pcc = &pc; // #1: not allowed
 *pcc = &c;

 *pc = ’C’; // #2: modifies a const object
}

— end note]
4 [Note: A prvalue of type “pointer to cvd1 T” can be converted to a prvalue of type “pointer to cvd2 T” if “cvd2 T” is
more cvd-qualified than “cvd1 T”. A prvalue of type “pointer to member of X of type cvd1 T” can be converted to a
prvalue of type “pointer to member of X of type cvd2 T” if “cvd2 T” is more cvd-qualified than “cvd1 T”. — end note]
5 [Note: Function types (including those used in pointer to member function types) are never cvd-qualified (11.3.5).
— end note]

8 Expressions [expr]
...
6 If a prvalue initially has the type “cvd T”, where T is a cvd-unqualified non-class, non-array type, the type of the
expression is adjusted to disjoint T prior to any further analysis.

...

8.1.2 �is [expr.prim.this]
...
3 Otherwise, if a member-declarator declares a non-static data member (12.2) of a class X, the expression this is a
prvalue of type “pointer to disjoint X” within the optional default member initializer (12.2). It shall not appear
elsewhere in the member-declarator.

...

8.2.9 Static cast [expr.static.cast]
1 �e result of the expression static_cast<T>(v) is the result of converting the expression v to type T. If T is an
lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue reference to object
type, the result is an xvalue; otherwise, the result is a prvalue. �e static_cast operator shall not cast away constness
(8.2.11). �e static_cast operator shall not inject the disjoint qualification.

...

8.3.4 New [expr.new]
1 �e new-expression attempts to create an disjoint object of the type-id (11.1) or new-type-id to which it is applied.
�e type of that object is the allocated type. �is type shall be a complete object type, but not an abstract class type or
array thereof (4.5, 6.9, 13.4). [Note: Because references are not objects, references cannot be created by new-
expressions. — end note] [Note: �e type-id may be a cv-qualified const-qualified or volatile-qualified type, in which
case the object created by the new-expression has a cv-qualified const-qualified or volatile-qualified type. �e object
created by the new-expression always has a disjoint-qualified type regardless of whether the type-id is a disjoint-
qualified type. — end note]

...

8.17 �rowing an exception [expr.throw]
...
2 Evaluating a throw-expression with an operand throws an exception (18.1); the type of the exception object is
determined by removing any top-level cv-qualifiers const or volatile qualifiers from the static type of the operand,
adding the top-level disjoint qualifier to the static type of the operand, and adjusting the type from “array of disjoint
T” or function type disjoint T to “pointer to disjoint T”.

...

10.1.7.1 �e cvd-qualifiers [dcl.type.cvd]
1 �ere are two three cvd-qualifiers, const, and volatile, and disjoint. Each cvd-qualifier shall appear at most
once in a cvd-qualifier-seq. If a cvd-qualifier appears in a decl-specifier-seq, the init-declarator-list or member-
declarator-list of the declaration shall not be empty. [Note: 6.9.3 and 11.3.5 describe how cv-qualifiers affect object
and function types. — end note] Redundant cvd-qualifications are ignored. [Note: For example, these could be
introduced by typedefs. — end note]

...

3 A pointer or reference to a cv-qualified const-qualified or volatile-qualified type need not actually point or refer to a
cv-qualified const-qualified or volatile-qualified object, but it is treated as if it does; a const-qualified access path
cannot be used to modify an object even if the object referenced is a non-const object and can be modified through
some other access path. A pointer or reference to a non-disjoint-qualified type need not actually point or refer to a non-
disjoint-qualified object, but it is treated as if it does; possible aliasing of an object is assumed in a non-disjoint-
qualified access path even if the object referenced is a disjoint object for which no aliasing can be assumed through
some other access path. [Note: Cvd-qualifiers are supported by the type system so that they cannot be subverted
without casting (8.2.11). — end note]

...
7 �e disjoint qualifier is a promise to the implementation that an object defined with a disjoint-qualified type is not
accessed through multiple paths in such a way that possible aliasing must be assumed. �us, the implementation may
assume that no aliasing with a disjoint-qualified object occurs. If an attempt is made to access a disjoint-qualified
object through multiple non-const-qualified access paths, then the behavior is undefined. [Note: Such an attempt can
be made by duplicating a pointer to a disjoint-qualified object, as would happen if two pointers to the same object
were passed to a function expecting pointers to two separate disjoint-qualified objects. — end note]

11 Declarators [dcl.decl]
...
4 Declarators have the syntax

...

cvd-qualifier-seq:
 cvd-qualifier cvd-qualifier-seqopt
cvd-qualifier:
 const

 volatile

 disjoint

...

11.4.1 In general [dcl.fct.def.general]
...
8 �e function-local predefined variable __func__ is defined as if a definition of the form

static const disjoint char __func__[] = "function-name";

had been provided, where function-name is an implementation-defined string. ...

...

12.2.2 Non-static member functions [class.mfct.non-static]
...
4 A non-static member function may be declared const, volatile, or const volatile, disjoint, const
disjoint, volatile disjoint, or const volatile disjoint. �ese cvd-qualifiers affect the type of the this
pointer (12.2.2.1). �ey also affect the function type (11.3.5) of the member function; a member function declared
const is a const member function, a member function declared volatile is a volatile member function, and a
member function declared const volatile is a const volatile member function, a member function declared
disjoint is a disjoint member function, a member function declared const disjoint is a const disjoint member
function, a member function declared volatile disjoint is a volatile disjoint member function, a member function
declared const volatile disjoint is a const volatile disjoint member function. [Example:

struct X {

 void g() const;

 void h() const volatile;

 void j() disjoint;

 void k() const disjoint;

};

X::g is a const member function, and X::h is a const volatile member function, X::j is a disjoint member
function, and X::k is a const disjoint member function. — end example]

...

12.2.2.1 �e this pointer [class.this]
1 In the body of a non-static (12.2.1) member function, the keyword this is a prvalue expression whose value is the
address of the object for which the function is called. �e type of this in a member function of a class X is X*. If the
member function is declared const, the type of this is const X*, if the member function is declared volatile, the
type of this is volatile X*, and if the member function is declared const volatile, the type of this is const
volatile X*, if the member function is declared disjoint, the type of this is disjoint X*, if the member
function is declared const disjoint, the type of this is const disjoint X*, if the member function is declared
volatile disjoint, the type of this is volatile disjoint X*, and if the member function is declared const
volatile disjoint, the type of this is const volatile disjoint X*. [Note: �us in a const member
function, the object for which the function is called is accessed through a const access path. — end note] [Example:

struct s {

 int a;

 int f() const;

 int g() { return a++; }

 int h() const { return a++; } // error
};

int s::f() const { return a; }

�e a++ in the body of s::h is ill-formed because it tries to modify (a part of) the object for which s::h() is called.
�is is not allowed in a const member function because this is a pointer to const; that is, *this has const type.
— end example]
2 Similarly, volatile semantics (10.1.7.1) apply in volatile member functions and disjoint semantics apply in
disjoint member functions when accessing the object and its non-static data members.
3 A cvd-qualified member function can be called on an object-expression (8.2.5) only if the object-expression is as
cvd-qualified or less-cvd-qualified than the member function. [Example:

void k(s& x, const s& y) {

 x.f();

 x.g();

 y.f();

 y.g(); // error
}

�e call y.g() is ill-formed because y is const and s::g() is a non-const member function, that is, s::g() is less-
qualified than the object-expression y. — end example]
4 Constructors (15.1) and destructors (15.4) shall not be declared const, volatile, or const volatile, disjoint,
const disjoint, volatile disjoint, or const volatile disjoint. [Note: However, these functions can be
invoked to create and destroy objects with cvd-qualified types, see 15.1 and 15.4. — end note]

12.2.3.1 Static member functions [class.static.mfct]
...
2 [Note: A static member function does not have a this pointer (12.2.2.1). — end note] A static member function shall
not be virtual. �ere shall not be a static and a non-static member function with the same name and the same

parameter types (16.1). A static member function shall not be declared const, volatile, or const volatile,
disjoint, const disjoint, volatile disjoint, or const volatile disjoint.

15.1 Constructors [class.ctor]
...
3 A constructor can be invoked for a const, volatile, or const volatile, disjoint, const disjoint,
volatile disjoint, or const volatile disjoint object. const and volatile semantics (10.1.7.1) are
notnever applied on an object under construction, and disjoint semantics are always applied on an object under
construction. �ey �e object’s actual cvd-qualifications come into effect when the constructor for the most derived
object (4.5) ends.

...

15.4 Destructors [class.dtor]
...
2 A destructor is used to destroy objects of its class type. �e address of a destructor shall not be taken. A destructor
can be invoked for a const, volatile, or const volatile, disjoint, const disjoint, volatile disjoint,
or const volatile disjoint object. const and volatile semantics (10.1.7.1) are notnever applied on an object
under destruction, and disjoint semantics are always applied on an object under destruction. �ey �e object’s actual
cvd-qualifications stop being in effect when the destructor for the most derived object (4.5) starts.

...

15.8.1 Copy/move constructors [class.copy.ctor]
1 A non-template constructor for class X is a copy constructor if its first parameter is of type X&, const X&, volatile
X&, or const volatile X&, disjoint X&, const disjoint X&, volatile disjoint X&, or const volatile
disjoint X&, and either there are no other parameters or else all other parameters have default arguments (11.3.6).
[Example: X::X(const X&) and X::X(X&,int=1) are copy constructors.

struct X {

 X(int);

 X(const X&, int = 1);

};

X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);

— end example]
2 A non-template constructor for class X is a move constructor if its first parameter is of type X&&, const X&&,
volatile X&&, or const volatile X&&, disjoint X&&, const disjoint X&&, volatile disjoint X&&, or
const volatile disjoint X&&, and either there are no other parameters or else all other parameters have default
arguments (11.3.6). [Example: Y::Y(Y&&) is a move constructor.

struct Y {

 Y(const Y&);

 Y(Y&&);

};

extern Y f(int);

Y d(f(1)); // calls Y(Y&&)
Y e = d; // calls Y(const Y&)

— end example]

...

4 [Note: If a class X only has a copy constructor with a parameter of type X&, an initializer of type const X or
volatile X X that is const-qualified or volatile-qualified cannot initialize an object of type (possibly cvd-qualified)
X. If a class X only has a copy constructor with a parameter of type disjoint X&, an initializer of type X without the
disjoint qualification cannot initialize an object of type (possibly cvd-qualified) X. [Example:

struct X {

 X(); // default constructor
 X(X&); // copy constructor with a non-const parameter
};

struct Y {

 Y(); // default constructor
 Y(disjoint Y&); // copy constructor with a disjoint parameter
};

const X cx;

Y ndy;

X x = cx; // error: X::X(X&) cannot copy cx into x
Y y = ndy; // error: Y::Y(disjoint Y&) cannot copy ndy into y

— end example] — end note]

...

15.8.2 Copy/move assignment operator [class.copy.assign]
1 A user-declared copy assignment operator X::operator= is a non-static non-template member function of class X
with exactly one parameter of type X, X&, const X&, volatile X&, or const volatile X&, disjoint X&, const
disjoint X&, volatile disjoint X&, or const volatile disjoint X&.120 [Note: An overloaded assignment
operator must be declared to have only one parameter; see 16.5.3. — end note] [Note: More than one form of copy
assignment operator may be declared for a class. — end note] [Note: If a class X only has a copy assignment operator
with a parameter of type X&, an expression of type const X X that is const-qualified or volatile-qualified cannot be
assigned to an object of type X. If a class X only has a copy assignment operator with a parameter of type disjoint
X&, an expression of type X without the disjoint qualification cannot be assigned to an object of type X. [Example:

struct X {

 X();

 X& operator=(X&);

};

struct Y {

 Y();

 Y& operator=(disjoint Y&);

};

const X cx;

X x;

Y ndy;

Y y;

void f() {

 x = cx; // error: X::operator=(X&) cannot assign cx into x
 y = ndy; // error: Y::operator=(disjoint Y&) cannot assign ndy into y
}

— end example] — end note]

...

16.1 Overloadable declarations [over.load]
...
(3.4) — Parameter declarations that differ only in the presence or absence of const, and/or volatile, and/or
disjoint are equivalent. �at is, the const, and volatile, and disjoint type-specifiers for each parameter type
are ignored when determining which function is being declared, defined, or called. [Example:

typedef const int cInt;

int f(int);

int f(const int); // redeclaration of f(int)

int f(int) { /* ... */ } // definition of f(int)

int f(cInt) { /* ... */ } // error: redefinition of f(int)

— end example]

Only the const, and volatile, and disjoint type-specifiers at the outermost level of the parameter type
specification are ignored in this fashion; const, and volatile, and disjoint type-specifiers buried within a
parameter type specification are significant and can be used to distinguish overloaded function declarations.123 In
particular, for any type T, “pointer to T”, “pointer to const T”, and “pointer to volatile T”, and “pointer to
disjoint T” are considered distinct parameter types, as are “reference to T”, “reference to const T”, and “reference
to volatile T”, and “reference to disjoint T”.

...

21.2.2 Header <cstdlib> synopsis [cstdlib.syn]
...

// 23.10.11, C library memory allocation

disjoint void* aligned_alloc(size_t alignment, size_t size);

disjoint void* calloc(size_t nmemb, size_t size);

void free(void* ptr);

disjoint void* malloc(size_t size);

disjoint void* realloc(void* ptr, size_t size);

...

	The disjoint qualifier
	Inverse qualifier
	Type safety
	Function overloading
	Non-static member functions
	Disjoint from birth
	Heap allocation
	Constructors and destructors
	Temporary objects
	Literals

	Modifications to the standard
	5.11 Keywords [lex.key]
	5.13.2 Integer literals [lex.icon]
	5.13.3 Character literals [lex.ccon]
	5.13.4 Floating literals [lex.fcon]
	5.13.5 String literals [lex.string]
	5.13.6 Boolean literals [lex.bool]
	5.13.7 Pointer literals [lex.nullptr]
	6.9.3 CVD-qualifiers [basic.type.qualifier]
	6.10 Lvalues and rvalues [basic.lval]
	7.1 Lvalue-to-rvalue conversion [conv.lval]
	7.4 Temporary materialization conversion [conv.rval]
	7.5 Qualification conversions [conv.qual]
	8 Expressions [expr]
	8.1.2 This [expr.prim.this]
	8.2.9 Static cast [expr.static.cast]
	8.3.4 New [expr.new]
	8.17 Throwing an exception [expr.throw]
	10.1.7.1 The cvd-qualifiers [dcl.type.cvd]
	11 Declarators [dcl.decl]
	11.4.1 In general [dcl.fct.def.general]
	12.2.2 Non-static member functions [class.mfct.non-static]
	12.2.2.1 The this pointer [class.this]
	12.2.3.1 Static member functions [class.static.mfct]
	15.1 Constructors [class.ctor]
	15.4 Destructors [class.dtor]
	15.8.1 Copy/move constructors [class.copy.ctor]
	15.8.2 Copy/move assignment operator [class.copy.assign]
	16.1 Overloadable declarations [over.load]
	21.2.2 Header <cstdlib> synopsis [cstdlib.syn]

