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• Example case: C4 Engine graphics and audio

 Preparing for the future
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What is a Game Engine?

 The word “engine” is used for a lot of things
• Generally, any significant piece of self-contained 

code that does something useful
 The term “graphics engine” often used to 

describe software that provides high-level 
rendering capabilities
• Provides more functionality than plain

OpenGL or DirectX
• Could support things like a scene graph, 

shadows, visibility determination, etc.
• Can be a very complicated piece of software



What is a Game Engine?

 The term “game engine” typically means a 
graphics engine plus a lot of other stuff that 
most games need
• Audio, music, 3D sound effects
• Input (keyboards, mice, other controllers)
• Networking for multiplayer games
• Resource management

 Game engines usually provide several 
higher-level features as well
• Physics, animation, special effects, AI, etc.



Creating a Game Engine

 A game engine can be an extremely 
complex piece of software

 It’s important to employ intelligent software 
engineering practices

 Games typically have greater performance 
requirements and resource constraints 
compared to other large software projects

 Game programmers often want more 
control over the computer, and will reduce 
external dependencies to get it



C4 Engine Architecture

Layer 1
Base Services

Layer 2
System Managers

Layer 3
Large-Scale Architecture

Layer 4
Game and Tools



Software Engineering

 Component isolation
• Easier to accomplish at lower levels
• Should be possible to replace a component 

without changing other code
 Layered architecture

• Code in one layer should only make calls to
code in its own layer or lower layers

 Good class design
• Use C++ inheritance and virtual functions
• Don’t duplicate functionality



Software Engineering

 Design the engine code for
cross-platform deployment
• Even if the engine will only be deployed

on a single platform
• Isolate platform-dependent code as

much as possible
 Usually code that calls into the operating system
 Can also pertain to code that uses external libraries

• The engine should be aware of byte order
 Loading resources from disk
 Sending/receiving data over the network
 Mac changed from big endian to little endian!



OS-Dependent Components
 Dark red components
make calls into the OS

 Higher layers not aware
of underlying OS



Demand on Computer Resources

 Games typically eat up all the resources 
that are available on a computer

 Performance consistency can be sensitive 
to environmental conditions beyond the 
control of the game engine
• An engine can have different performance 

characteristics on different platforms
 Therefore, engine programmers tend to 

implement everything they can themselves
• Remove dependencies on external code,

even the standard libraries!



Low-level Engine Components

 Memory manager
• Override standard new and delete operators
• Some consoles do not have virtual memory
• Must ensure exactly the same behavior on

all platforms
 Containers library

• Replaces STL
• Implemented in such a way that memory 

allocation is strictly controlled, or for many 
containers, is eliminated



Low-level Engine Components

 Math Library
• Vectors, matrices, quaternions, colors, etc.

 File Manager
• Platform-independent access to disk

 Resource Manager
• Generic system for tracking all types of

data read from the disk
 Time Manager

• Platform-independent timing facilities
 System Utilities

• Threads, mutexes, signals, etc.



Building an Engine from Scratch

 First need a basic shell running
• Most of the low-level components will need to be 

written very early in the development process
• The engine needs a simple event loop providing 

per-platform responses to input events
• Some simple form of output will be necessary 

until a more capable graphics system is available
 Larger components can then be developed

• These make up the second layer of the engine
• Low-level graphics, sound, networking, input



Component Refinement

 The first implementation of a component 
will usually be thrown out!
• When you’re implementing a system for the first 

time, new design considerations will often pop up 
that couldn’t really be foreseen

• Early in development, many components could 
be trashed and restarted several times

• Later, components tend to be rewritten much less 
frequently, but it still happens
 Perhaps new capabilities are required or

new technologies become available



Component Refinement

 Frequency of rewrites decreases
with layer height
• In the C4 Engine, almost all 1st and 2nd layer 

components have been rewritten at least once
 Good isolation means higher layers are not affected

• Many high-level components have not been 
rewritten in their entirety
 But many parts of these components have been

refined at one time or another



Component Rewrites
Memory Mgr: 1999, 2000, 2007
Resource Mgr: 2000, 2004, 2007

Graphics Mgr: 1999, 2000, 2001,
2005, 2007

Sound Mgr: 1999, 2001, 2007
Input Mgr: 2001, 2003, 2005
Network Mgr: 1999, 2001

Interface Mgr: 1999, 2004
Animation Sys: 2000, 2006



Evolution of Graphics Technology

 1999
• Baked light maps
• Multi-pass rendering to

achieve special shading
• Limited stencil shadows
• Limited dynamic lights



Evolution of Graphics Technology

 2001
• Fully dynamic lights
• Robust stencil shadows

on everything
• Projected shadows
• Separation of ambient

lighting term
• Normal mapping
• Required GeForce 256+

or Radeon 8500+



Evolution of Graphics Technology

 2005
• Shadow maps
• Reflection and

refraction portals
• Parallax mapping
• Ambient light volumes
• Required GeForce 3+

or Radeon 9500+



Evolution of Graphics Technology

 2006–2007
• Post-processing

(motion blur, glow)
• Lots of new special

effects (fire, panels,
fog, special particles)

• GF 3-4 support dropped



Evolution of Graphics Technology

 2008
• More advanced

ambient shading
• Large-scale terrain

and outdoor scenes
• Dense foliage
• Built-in physics



Cross-Platform Graphics

 OpenGL available on PC and Mac
• Unfortunately, only Nvidia implements support

for latest GPU features in OpenGL
• OpenGL 3 is vaporware!

 OpenGL ES supported on PS3
• But not used by any serious developers
• Lower-level library used instead

 Excluding Nvidia, general trend is waning 
support for OpenGL games
• Cross-platform solution going down the tubes



Cross-Platform Graphics

 Lack of cross-platform graphics required 
changes to C4 Engine
• The code that accesses the graphics hardware 

has been separated from the Graphics Manager
• Makes future DirectX version easier



Shadowing Techniques

 C4 has been using stencil shadows
• Robust technique
• Requires closed meshes
• Produces silhouette faceting
• Uses lots of hardware fill power

 C4 currently has limited shadow mapping
• Mostly robust technique
• Works for non-closed meshes
• Much better for alpha-tested geometry
• Produces artifacts (“shadow acne”)
• Resolution dependency



Shadow Mapping

 C4 moving toward dynamic shadow maps
• Orthogonal to stencil shadows
• Hard to do for point lights
• Will require more memory
• Potential for higher performance
• The only option for dense foliage



Higher-Level Graphics Systems

 Large-scale visibility determination
• Essential for good performance
• World must be organized into a structure that can 

be used to quickly figure out what is visible
 Old-school BSP tree
 Quad tree, octree
 Hierarchical bounding volume tree (BVH)
 Portal system
 Combinations of the above



Portal System

 A powerful technique for any size world
• World is divided into

zones connected by
portals

• Only accesses parts of
scene that are actually
visible

• Works well with a
per-zone BVH

• Easy to implement
basic algorithm Camera



Portal System

 Also used for lighting
• Engine can use portals

to determine set of
visible lights

• All other lights in the
world are ignored

Light



Portal System

 Becomes very complicated when
dynamic shadows are thrown in

Camera

Light

A B C

D E

Culled
Caster



Evolution of Audio Technology

 Basic audio support
• Play mono and stereo sound data
• Streaming from disk
• Simulate 3D positioning

 Environmental Audio Effects (EAX)
• Hardware acceleration
• Reflection, reverb, absorption
• Frequency-dependent effects
• Unfortunately, not well-supported
• Not cross-platform



Evolution of Audio Technology

 No audio API standard
• OpenAL was a valiant attempt,

but never really took off
• DirectSound now replaced by XAudio
 At least this covers Windows and Xbox 360

• Only high-performance path on Mac
is CoreAudio

• PS3 has its own audio library



Evolution of Audio Technology

 C4 now uses custom mixer
• Uses minimal amount of functionality in the 

various audio libraries
• Provides consistent results on all platforms
• Full-featured
 Reflection, reverb
 Atmospheric absorption
 Doppler, frequency effects

• Perfect fit for dual-core processors!
 Audio processing decoupled from rendering loop
 Streaming nature easy on memory caches



Multi-Core Processors

 The near-term future of computing
• Dual-core is already common
• Quad-core through 16-core common soon
• PS3’s Cell processor has 8 special cores
• GPUs becoming general-purpose processors 

with lots of cores
 Game engines need to be designed to

take advantage of this power
• Tasks need to be isolated from each other
• Processing rates need to be decoupled
 For example, physical simulations can run at higher

loop rates than the rendering system



Multithreading in Game Engines

 Threads already used to some degree
• Audio processing
 Mixing and streaming can use a lot of time

• Networking
 Only awake to handle socket traffic

• OpenGL driver usually multithreaded now
 Normally one more thread, decoupled from main thread

• OS will spawn threads to handle infrequent tasks
 DirectSound, DirectInput, etc.
 These threads almost always asleep



Multithreading in Game Engines

 Hard to keep more than two cores fed in 
current generation of game engines

 But plenty of ideas for using up the 
processing power
• Physics
 Collision detection
 Fluid simulation
 Cloth simulation

• Particle systems
• Character animation
 Bone transformation
 Mesh skinning



Multithreading in Game Engines

 Multithreading creates new
synchronization issues
• Many threads need to complete their tasks 

before rendering can occur
• Easier to manage on consoles because 

applications have greater control over GPU



Multithreading in Game Engines

 One worker thread runs per processor
• Processes jobs that are queued by main thread

Single thread Multiple threads



Conclusions

 Nowadays, a game engine is a 
continuously evolving project
• Rare to see an engine started from scratch

for new games if an engine used for a previous 
game already exists

 Highly parallel threading is the future
• Both on CPU and GPU
• New engines need to be ready for this
• Existing engines need to be modified for this



Questions?

 lengyel@terathon.com
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