
Evolution of a Game Engine

Eric Lengyel



Outline

 Introduction to game engines
 Creating a game engine

• Software engineering practices
• Major parts of an engine

 Maintaining a game engine over time
• Example case: C4 Engine graphics and audio

 Preparing for the future
• Multithreading



What is a Game Engine?

 The word “engine” is used for a lot of things
• Generally, any significant piece of self-contained 

code that does something useful
 The term “graphics engine” often used to 

describe software that provides high-level 
rendering capabilities
• Provides more functionality than plain

OpenGL or DirectX
• Could support things like a scene graph, 

shadows, visibility determination, etc.
• Can be a very complicated piece of software



What is a Game Engine?

 The term “game engine” typically means a 
graphics engine plus a lot of other stuff that 
most games need
• Audio, music, 3D sound effects
• Input (keyboards, mice, other controllers)
• Networking for multiplayer games
• Resource management

 Game engines usually provide several 
higher-level features as well
• Physics, animation, special effects, AI, etc.



Creating a Game Engine

 A game engine can be an extremely 
complex piece of software

 It’s important to employ intelligent software 
engineering practices

 Games typically have greater performance 
requirements and resource constraints 
compared to other large software projects

 Game programmers often want more 
control over the computer, and will reduce 
external dependencies to get it



C4 Engine Architecture

Layer 1
Base Services

Layer 2
System Managers

Layer 3
Large-Scale Architecture

Layer 4
Game and Tools



Software Engineering

 Component isolation
• Easier to accomplish at lower levels
• Should be possible to replace a component 

without changing other code
 Layered architecture

• Code in one layer should only make calls to
code in its own layer or lower layers

 Good class design
• Use C++ inheritance and virtual functions
• Don’t duplicate functionality



Software Engineering

 Design the engine code for
cross-platform deployment
• Even if the engine will only be deployed

on a single platform
• Isolate platform-dependent code as

much as possible
 Usually code that calls into the operating system
 Can also pertain to code that uses external libraries

• The engine should be aware of byte order
 Loading resources from disk
 Sending/receiving data over the network
 Mac changed from big endian to little endian!



OS-Dependent Components
 Dark red components
make calls into the OS

 Higher layers not aware
of underlying OS



Demand on Computer Resources

 Games typically eat up all the resources 
that are available on a computer

 Performance consistency can be sensitive 
to environmental conditions beyond the 
control of the game engine
• An engine can have different performance 

characteristics on different platforms
 Therefore, engine programmers tend to 

implement everything they can themselves
• Remove dependencies on external code,

even the standard libraries!



Low-level Engine Components

 Memory manager
• Override standard new and delete operators
• Some consoles do not have virtual memory
• Must ensure exactly the same behavior on

all platforms
 Containers library

• Replaces STL
• Implemented in such a way that memory 

allocation is strictly controlled, or for many 
containers, is eliminated



Low-level Engine Components

 Math Library
• Vectors, matrices, quaternions, colors, etc.

 File Manager
• Platform-independent access to disk

 Resource Manager
• Generic system for tracking all types of

data read from the disk
 Time Manager

• Platform-independent timing facilities
 System Utilities

• Threads, mutexes, signals, etc.



Building an Engine from Scratch

 First need a basic shell running
• Most of the low-level components will need to be 

written very early in the development process
• The engine needs a simple event loop providing 

per-platform responses to input events
• Some simple form of output will be necessary 

until a more capable graphics system is available
 Larger components can then be developed

• These make up the second layer of the engine
• Low-level graphics, sound, networking, input



Component Refinement

 The first implementation of a component 
will usually be thrown out!
• When you’re implementing a system for the first 

time, new design considerations will often pop up 
that couldn’t really be foreseen

• Early in development, many components could 
be trashed and restarted several times

• Later, components tend to be rewritten much less 
frequently, but it still happens
 Perhaps new capabilities are required or

new technologies become available



Component Refinement

 Frequency of rewrites decreases
with layer height
• In the C4 Engine, almost all 1st and 2nd layer 

components have been rewritten at least once
 Good isolation means higher layers are not affected

• Many high-level components have not been 
rewritten in their entirety
 But many parts of these components have been

refined at one time or another



Component Rewrites
Memory Mgr: 1999, 2000, 2007
Resource Mgr: 2000, 2004, 2007

Graphics Mgr: 1999, 2000, 2001,
2005, 2007

Sound Mgr: 1999, 2001, 2007
Input Mgr: 2001, 2003, 2005
Network Mgr: 1999, 2001

Interface Mgr: 1999, 2004
Animation Sys: 2000, 2006



Evolution of Graphics Technology

 1999
• Baked light maps
• Multi-pass rendering to

achieve special shading
• Limited stencil shadows
• Limited dynamic lights



Evolution of Graphics Technology

 2001
• Fully dynamic lights
• Robust stencil shadows

on everything
• Projected shadows
• Separation of ambient

lighting term
• Normal mapping
• Required GeForce 256+

or Radeon 8500+



Evolution of Graphics Technology

 2005
• Shadow maps
• Reflection and

refraction portals
• Parallax mapping
• Ambient light volumes
• Required GeForce 3+

or Radeon 9500+



Evolution of Graphics Technology

 2006–2007
• Post-processing

(motion blur, glow)
• Lots of new special

effects (fire, panels,
fog, special particles)

• GF 3-4 support dropped



Evolution of Graphics Technology

 2008
• More advanced

ambient shading
• Large-scale terrain

and outdoor scenes
• Dense foliage
• Built-in physics



Cross-Platform Graphics

 OpenGL available on PC and Mac
• Unfortunately, only Nvidia implements support

for latest GPU features in OpenGL
• OpenGL 3 is vaporware!

 OpenGL ES supported on PS3
• But not used by any serious developers
• Lower-level library used instead

 Excluding Nvidia, general trend is waning 
support for OpenGL games
• Cross-platform solution going down the tubes



Cross-Platform Graphics

 Lack of cross-platform graphics required 
changes to C4 Engine
• The code that accesses the graphics hardware 

has been separated from the Graphics Manager
• Makes future DirectX version easier



Shadowing Techniques

 C4 has been using stencil shadows
• Robust technique
• Requires closed meshes
• Produces silhouette faceting
• Uses lots of hardware fill power

 C4 currently has limited shadow mapping
• Mostly robust technique
• Works for non-closed meshes
• Much better for alpha-tested geometry
• Produces artifacts (“shadow acne”)
• Resolution dependency



Shadow Mapping

 C4 moving toward dynamic shadow maps
• Orthogonal to stencil shadows
• Hard to do for point lights
• Will require more memory
• Potential for higher performance
• The only option for dense foliage



Higher-Level Graphics Systems

 Large-scale visibility determination
• Essential for good performance
• World must be organized into a structure that can 

be used to quickly figure out what is visible
 Old-school BSP tree
 Quad tree, octree
 Hierarchical bounding volume tree (BVH)
 Portal system
 Combinations of the above



Portal System

 A powerful technique for any size world
• World is divided into

zones connected by
portals

• Only accesses parts of
scene that are actually
visible

• Works well with a
per-zone BVH

• Easy to implement
basic algorithm Camera



Portal System

 Also used for lighting
• Engine can use portals

to determine set of
visible lights

• All other lights in the
world are ignored

Light



Portal System

 Becomes very complicated when
dynamic shadows are thrown in

Camera

Light

A B C

D E

Culled
Caster



Evolution of Audio Technology

 Basic audio support
• Play mono and stereo sound data
• Streaming from disk
• Simulate 3D positioning

 Environmental Audio Effects (EAX)
• Hardware acceleration
• Reflection, reverb, absorption
• Frequency-dependent effects
• Unfortunately, not well-supported
• Not cross-platform



Evolution of Audio Technology

 No audio API standard
• OpenAL was a valiant attempt,

but never really took off
• DirectSound now replaced by XAudio
 At least this covers Windows and Xbox 360

• Only high-performance path on Mac
is CoreAudio

• PS3 has its own audio library



Evolution of Audio Technology

 C4 now uses custom mixer
• Uses minimal amount of functionality in the 

various audio libraries
• Provides consistent results on all platforms
• Full-featured
 Reflection, reverb
 Atmospheric absorption
 Doppler, frequency effects

• Perfect fit for dual-core processors!
 Audio processing decoupled from rendering loop
 Streaming nature easy on memory caches



Multi-Core Processors

 The near-term future of computing
• Dual-core is already common
• Quad-core through 16-core common soon
• PS3’s Cell processor has 8 special cores
• GPUs becoming general-purpose processors 

with lots of cores
 Game engines need to be designed to

take advantage of this power
• Tasks need to be isolated from each other
• Processing rates need to be decoupled
 For example, physical simulations can run at higher

loop rates than the rendering system



Multithreading in Game Engines

 Threads already used to some degree
• Audio processing
 Mixing and streaming can use a lot of time

• Networking
 Only awake to handle socket traffic

• OpenGL driver usually multithreaded now
 Normally one more thread, decoupled from main thread

• OS will spawn threads to handle infrequent tasks
 DirectSound, DirectInput, etc.
 These threads almost always asleep



Multithreading in Game Engines

 Hard to keep more than two cores fed in 
current generation of game engines

 But plenty of ideas for using up the 
processing power
• Physics
 Collision detection
 Fluid simulation
 Cloth simulation

• Particle systems
• Character animation
 Bone transformation
 Mesh skinning



Multithreading in Game Engines

 Multithreading creates new
synchronization issues
• Many threads need to complete their tasks 

before rendering can occur
• Easier to manage on consoles because 

applications have greater control over GPU



Multithreading in Game Engines

 One worker thread runs per processor
• Processes jobs that are queued by main thread

Single thread Multiple threads



Conclusions

 Nowadays, a game engine is a 
continuously evolving project
• Rare to see an engine started from scratch

for new games if an engine used for a previous 
game already exists

 Highly parallel threading is the future
• Both on CPU and GPU
• New engines need to be ready for this
• Existing engines need to be modified for this



Questions?

 lengyel@terathon.com


	Evolution of a Game Engine
	Outline
	What is a Game Engine?
	What is a Game Engine?
	Creating a Game Engine
	C4 Engine Architecture
	Software Engineering
	Software Engineering
	OS-Dependent Components
	Demand on Computer Resources
	Low-level Engine Components
	Low-level Engine Components
	Building an Engine from Scratch
	Component Refinement
	Component Refinement
	Component Rewrites
	Evolution of Graphics Technology
	Evolution of Graphics Technology
	Evolution of Graphics Technology
	Evolution of Graphics Technology
	Evolution of Graphics Technology
	Cross-Platform Graphics
	Cross-Platform Graphics
	Shadowing Techniques
	Shadow Mapping
	Higher-Level Graphics Systems
	Portal System
	Portal System
	Portal System
	Evolution of Audio Technology
	Evolution of Audio Technology
	Evolution of Audio Technology
	Multi-Core Processors
	Multithreading in Game Engines
	Multithreading in Game Engines
	Multithreading in Game Engines
	Multithreading in Game Engines
	Conclusions
	Questions?

