Grassmann Algebra in Game Development

Eric Lengyel, PhD
Terathon Software
Math used in 3D programming

- Dot / cross products, scalar triple product
- Planes as 4D vectors
- Homogeneous coordinates
- Plücker coordinates for 3D lines
- Transforming normal vectors and planes with the inverse transpose of a matrix
Math used in 3D programming

- These concepts often used without a complete understanding of the big picture
 - Can be used in a way that is not natural
 - Different pieces used separately without knowledge of the connection among them
There is a bigger picture

- All of these arise as part of a single mathematical system
 - Understanding the big picture provides deep insights into seemingly unusual properties
 - Knowledge of the relationships among these concepts makes better 3D programmers
Clifford Algebras

- In n dimensions, add n special units e_1, \ldots, e_n to the real numbers

- Choose whether each e_i squares to 0, 1, or −1
Complex numbers

- One unit \(e \) that squares to \(-1\)
Dual numbers

- One unit e that squares to 0
Geometric Algebra

- All n of the e_i square to 1
- For $n = 3$, quaternions included here
Dual Quaternions

- Part of 4D Clifford algebra with

\[e_1^2 = 1 \quad e_2^2 = 1 \quad e_3^2 = 1 \quad e_4^2 = 0 \]
Grassmann Algebra

- All n of the e_i square to 0
Outline

- Grassmann algebra in 3-4 dimensions
 - Wedge product, bivectors, trivectors...
 - Transformations
 - Homogeneous model
 - Geometric computation
 - Programming considerations
The wedge product

- Also known as:
 - The progressive product
 - The exterior product

- Gets name from symbol:
 \[a \wedge b \]

- Read “\textit{a wedge b}”
The wedge product

- Operates on scalars, vectors, and more
 - Ordinary multiplication for scalars s and t: $$s \wedge t = t \wedge s = st$$ $$s \wedge \mathbf{v} = \mathbf{v} \wedge s = s\mathbf{v}$$
 - The square of a vector \mathbf{v} is always zero: $$\mathbf{v} \wedge \mathbf{v} = 0$$
Wedge product anticommutativity

- Zero square implies vectors anticommute

\[(a + b) \wedge (a + b) = 0\]
\[a \wedge a + a \wedge b + b \wedge a + b \wedge b = 0\]
\[a \wedge b + b \wedge a = 0\]
\[a \wedge b = -b \wedge a\]
Bivectors

- Wedge product between two vectors produces a “bivector”
 - A new mathematical entity
 - Distinct from a scalar or vector
 - Represents an oriented 2D area
 - Whereas a vector represents an oriented 1D direction
 - Scalars are zero-dimensional values
Bivectors

- Bivector is two directions and magnitude
Bivectors

- Order of multiplication matters

\[\mathbf{a} \wedge \mathbf{b} = -\mathbf{b} \wedge \mathbf{a} \]
Bivectors in 3D

- Start with 3 orthonormal basis vectors: e_1, e_2, e_3

- Then a 3D vector a can be expressed as $a_1e_1 + a_2e_2 + a_3e_3$
Bivectors in 3D

\[\mathbf{a} \wedge \mathbf{b} = (a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3) \wedge (b_1 \mathbf{e}_1 + b_2 \mathbf{e}_2 + b_3 \mathbf{e}_3) \]

\[\mathbf{a} \wedge \mathbf{b} = a_1 b_2 (\mathbf{e}_1 \wedge \mathbf{e}_2) + a_1 b_3 (\mathbf{e}_1 \wedge \mathbf{e}_3) + a_2 b_1 (\mathbf{e}_2 \wedge \mathbf{e}_1) + a_2 b_3 (\mathbf{e}_2 \wedge \mathbf{e}_3) + a_3 b_1 (\mathbf{e}_3 \wedge \mathbf{e}_1) + a_3 b_2 (\mathbf{e}_3 \wedge \mathbf{e}_2) \]

\[\mathbf{a} \wedge \mathbf{b} = (a_2 b_3 - a_3 b_2)(\mathbf{e}_2 \wedge \mathbf{e}_3) + (a_3 b_1 - a_1 b_3)(\mathbf{e}_3 \wedge \mathbf{e}_1) + (a_1 b_2 - a_2 b_1)(\mathbf{e}_1 \wedge \mathbf{e}_2) \]
Bivectors in 3D

- The result of the wedge product has three components on the basis

\[e_2 \wedge e_3, \quad e_3 \wedge e_1, \quad e_1 \wedge e_2 \]

- Written in order of which basis vector is missing from the basis bivector
Bivectors in 3D

Do the components look familiar?

\[\mathbf{a} \wedge \mathbf{b} = (a_2 b_3 - a_3 b_2) (\mathbf{e}_2 \wedge \mathbf{e}_3) + (a_3 b_1 - a_1 b_3) (\mathbf{e}_3 \wedge \mathbf{e}_1) + (a_1 b_2 - a_2 b_1) (\mathbf{e}_1 \wedge \mathbf{e}_2) \]

These are identical to the components produced by the cross product \(\mathbf{a} \times \mathbf{b} \)
Shorthand notation

\[e_{12} = e_1 \wedge e_2 \]
\[e_{23} = e_2 \wedge e_3 \]
\[e_{31} = e_3 \wedge e_1 \]
\[e_{123} = e_1 \wedge e_2 \wedge e_3 \]
Bivectors in 3D

\[
\mathbf{a} \wedge \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{e}_{23} + (a_3b_1 - a_1b_3)\mathbf{e}_{31} + (a_1b_2 - a_2b_1)\mathbf{e}_{12}
\]
Comparison with cross product

- The cross product is not associative:
 \[(a \times b) \times c \neq a \times (b \times c)\]

- The cross product is only defined in 3D

- The wedge product is associative, and it’s defined in all dimensions
Trivectors

- Wedge product among three vectors produces a “trivector”
 - Another new mathematical entity
 - Distinct from scalars, vectors, and bivectors
 - Represents a 3D oriented volume
Trivectors

\[a \wedge b \wedge c \]
Trivectors in 3D

- A 3D trivector has one component:

\[\mathbf{a} \land \mathbf{b} \land \mathbf{c} = \]

\[(a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_1 b_3 c_2 - a_2 b_1 c_3 - a_3 b_2 c_1) \cdot (\mathbf{e}_1 \land \mathbf{e}_2 \land \mathbf{e}_3) \]

- The magnitude is \(\det([\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}]) \)
Trivectors in 3D

- 3D trivector also called *pseudoscalar* or *antiscalar*
 - Only one component, so looks like a scalar
 - Flips sign under reflection
Scalar Triple Product

- The product
 \[a \land b \land c \]
 produces the same magnitude as
 \[(a \times b) \cdot c \]
 but also extends to higher dimensions
Grading

- The *grade* of an entity is the number of vectors wedged together to make it
 - Scalars have grade 0
 - Vectors have grade 1
 - Bivectors have grade 2
 - Trivectors have grade 3
 - Etc.
3D multivector algebra

- 1 scalar element
- 3 vector elements
- 3 bivector elements
- 1 trivector element
- No higher-grade elements
- Total of 8 multivector basis elements
Multivectors in general dimension

- In n dimensions, the number of basis k-vector elements is $\binom{n}{k}$
- This produces a nice symmetry
- Total number of basis elements always 2^n
Multivectors in general dimension

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Graded elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 1</td>
</tr>
<tr>
<td>2</td>
<td>1 2 1</td>
</tr>
<tr>
<td>3</td>
<td>1 3 3 1</td>
</tr>
<tr>
<td>4</td>
<td>1 4 6 4 1</td>
</tr>
<tr>
<td>5</td>
<td>1 5 10 10 5 1</td>
</tr>
</tbody>
</table>
Four dimensions

- Four basis vectors e_1, e_2, e_3, e_4
- Number of basis bivectors is
 \[
 \binom{4}{2} = 6
 \]
- There are 4 basis trivectors
Vector / bivector confusion

- In 3D, vectors have three components
- In 3D, bivectors have three components
- Thus, vectors and bivectors *look like* the same thing!
- This is a big reason why knowledge of the difference is not widespread
Cross product peculiarities

- Physicists noticed a long time ago that the cross product produces a different kind of vector
 - They call it an “axial vector”, “pseudovector”, “covector”, or “covariant vector”
 - It transforms differently than ordinary “polar vectors” or “contravariant vectors”
Cross product transform

- Simplest example is a reflection:

\[
M = \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
Cross product transform

\[(1,0,0) \times (0,1,0) = (0,0,1)\]

\[\mathbf{M}(1,0,0) \times \mathbf{M}(0,1,0) = (-1,0,0) \times (0,1,0) = (0,0,-1)\]

- Not the same as \[\mathbf{M}(0,0,1) = (0,0,1)\]
Cross product transform
Cross product transform

- In general, for 3×3 matrix M,

$$M(a_1 e_1 + a_2 e_2 + a_3 e_3) = a_1 M_1 + a_2 M_2 + a_3 M_3$$

$$Ma \times Mb =$$

$$(a_1 M_1 + a_2 M_2 + a_3 M_3) \times (b_1 M_1 + b_2 M_2 + b_3 M_3)$$
Cross product transform

\[\mathbf{Ma} \times \mathbf{Mb} = (a_2b_3 - a_3b_2)(\mathbf{M}_2 \times \mathbf{M}_3) + (a_3b_1 - a_1b_3)(\mathbf{M}_3 \times \mathbf{M}_1) + (a_1b_2 - a_2b_1)(\mathbf{M}_1 \times \mathbf{M}_2) \]
Products of matrix columns

\[(M_2 \times M_3) \cdot M_1 = \det M\]
\[(M_3 \times M_1) \cdot M_2 = \det M\]
\[(M_1 \times M_2) \cdot M_3 = \det M\]

- Other dot products are zero
Matrix inversion

- Cross products as rows of matrix:

\[
\begin{bmatrix}
M_2 \times M_3 \\
M_3 \times M_1 \\
M_1 \times M_2
\end{bmatrix}
\begin{bmatrix}
det M & 0 & 0 \\
0 & det M & 0 \\
0 & 0 & det M
\end{bmatrix}
\]
Cross product transform

Transforming the cross product requires the inverse matrix:

\[
\begin{bmatrix}
M_2 \times M_3 \\
M_3 \times M_1 \\
M_1 \times M_2
\end{bmatrix} = (\det M)M^{-1}
\]
Cross product transform

- Transpose the inverse to get right result:

\[
(\det M) M^{-T} \begin{bmatrix}
 a_2 b_3 - a_3 b_2 \\
 a_3 b_1 - a_1 b_3 \\
 a_1 b_2 - a_2 b_1
\end{bmatrix}
= (a_2 b_3 - a_3 b_2)(M_2 \times M_3) + (a_3 b_1 - a_1 b_3)(M_3 \times M_1) + (a_1 b_2 - a_2 b_1)(M_1 \times M_2)
\]
Cross product transform

- Transformation formula:

\[Ma \times Mb = (\det M) M^{-T} (a \times b) \]

- Result of cross product must be transformed by inverse transpose times determinant
Cross product transform

- If \mathbf{M} is orthogonal, then inverse transpose is the same as \mathbf{M}
- If the determinant is positive, then it can be left out if you don’t care about length
- Determinant times inverse transpose is called *adjugate transpose*
Cross product transform

- What’s really going on here?

- When we take a cross product, we are really creating a bivector
- Bivectors are not vectors, and they don’t behave like vectors
Normal “vectors”

- A triangle normal is created by taking the cross product between two tangent vectors
- A normal is a bivector and transforms as such
Normal “vector” transformation
Classical derivation

- Standard proof for inverse transpose for transforming normals:
 - Preserve zero dot product with tangent
 - Misses extra factor of \(\det M \)

\[
\begin{align*}
N \cdot T &= 0 \\
UN \cdot MT &= 0 \\
N^T U^T MT &= 0 \\
U^T &= M^{-1} \\
U &= M^{-T}
\end{align*}
\]
Matrix inverses

- In general, the i-th row of the inverse of M is $1/\det M$ times the wedge product of all columns of M except column i.
Higher dimensions

- In n dimensions, the $(n-1)$-vectors have n components, just as 1-vectors do.
- Each 1-vector basis element uses exactly one of the spatial directions $e_1\ldots e_n$.
- Each $(n-1)$-vector basis element uses all except one of the spatial directions $e_1\ldots e_n$.
Symmetry in three dimensions

- Vector basis and bivector \((n-1)\) basis

\[\begin{align*}
 e_1 & \quad e_2 \wedge e_3 \\
 e_2 & \quad e_3 \wedge e_1 \\
 e_3 & \quad e_1 \wedge e_2
\end{align*} \]
Symmetry in four dimensions

- Vector basis and trivector \((n-1)\) basis

\[
\begin{align*}
\mathbf{e}_1 & \quad \mathbf{e}_2 \wedge \mathbf{e}_3 \wedge \mathbf{e}_4 \\
\mathbf{e}_2 & \quad \mathbf{e}_1 \wedge \mathbf{e}_4 \wedge \mathbf{e}_3 \\
\mathbf{e}_3 & \quad \mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_4 \\
\mathbf{e}_4 & \quad \mathbf{e}_1 \wedge \mathbf{e}_3 \wedge \mathbf{e}_2 \\
\end{align*}
\]
Dual basis

- Use special notation for wedge product of all but one basis vector:

\[
\begin{align*}
\bar{e}_1 &= e_2 \wedge e_3 \wedge e_4 \\
\bar{e}_2 &= e_1 \wedge e_4 \wedge e_3 \\
\bar{e}_3 &= e_1 \wedge e_2 \wedge e_4 \\
\bar{e}_4 &= e_1 \wedge e_3 \wedge e_2
\end{align*}
\]
Dual basis

- Instead of saying \((n-1)\)-vector, we call these “antivectors”
- In \(n\) dimensions, antivector always means a quantity expressed on the basis with grade \(n-1\)
Vector / antivector product

- Wedge product between vector and antivector is the origin of the dot product

\[(a_1 \mathbf{e}_1 + a_2 \mathbf{e}_2 + a_3 \mathbf{e}_3) \wedge (b_1 \bar{\mathbf{e}}_1 + b_2 \bar{\mathbf{e}}_2 + b_3 \bar{\mathbf{e}}_3)\]

\[= (a_1 b_1 + a_2 b_2 + a_3 b_3)(\mathbf{e}_1 \wedge \mathbf{e}_2 \wedge \mathbf{e}_3)\]

- They complement each other, and “fill in” the volume element
Vector / antivector product

- Many of the dot products you take are actually vector / antivector wedge products
- For instance, $\mathbf{N} \cdot \mathbf{L}$ in diffuse lighting
- \mathbf{N} is an antivector
- Calculating volume of extruded bivector
Diffuse Lighting
The regressive product

- Grassmann realized there is another product symmetric to the wedge product
- Not well-known at all
 - Most books on geometric algebra leave it out completely
- Very important product, though!
The regressive product

- Operates on antivectors in a manner symmetric to how the wedge product operates on vectors
- Uses an upside-down wedge:

$$\bar{e}_1 \lor \bar{e}_2$$

- We call it the “antiwedge” product
The antiwedge product

- Has same properties as wedge product, but for antivectors
- Operates in complementary space on dual basis or “antibasis”
The antiwedge product

- Whereas the wedge product increases grade, the antiwedge product decreases it
- Suppose, in n-dimensional Grassmann algebra, \mathbf{A} has grade r and \mathbf{B} has grade s
- Then $\mathbf{A} \wedge \mathbf{B}$ has grade $r + s$
- And $\mathbf{A} \vee \mathbf{B}$ has grade
\[n - (n - r) - (n - s) = r + s - n \]
Antiwedge product in 3D

\[
\bar{e}_1 \lor \bar{e}_2 = (e_2 \land e_3) \lor (e_3 \land e_1) = e_3
\]

\[
\bar{e}_2 \lor \bar{e}_3 = (e_3 \land e_1) \lor (e_1 \land e_2) = e_1
\]

\[
\bar{e}_3 \lor \bar{e}_1 = (e_1 \land e_2) \lor (e_2 \land e_3) = e_2
\]
Similar shorthand notation

\[\bar{e}_{12} = \bar{e}_1 \lor \bar{e}_2 \]

\[\bar{e}_{23} = \bar{e}_2 \lor \bar{e}_3 \]

\[\bar{e}_{31} = \bar{e}_3 \lor \bar{e}_1 \]

\[\bar{e}_{123} = \bar{e}_1 \lor \bar{e}_2 \lor \bar{e}_3 \]
Join and meet

- Wedge product joins *vectors* together
 - Analogous to union
- Antiwedge product joins *antivectors*
 - Antivectors represent absence of geometry
 - Joining antivectors is like removing vectors
 - Analogous to intersection
 - Called a meet operation
Homogeneous coordinates

- Points have a 4D representation:
 \[P = (x, y, z, w) \]

- Conveniently allows affine transformation through 4 x 4 matrix

- Used throughout 3D graphics
Homogeneous points

• To project onto 3D space, find where 4D vector intersects subspace where $w = 1$

\[P = (x, y, z, w) \]

\[P_{3D} = \left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w} \right) \]
Homogeneous model

* With Grassmann algebra, homogeneous model can be extended to include 3D points, lines, and planes
* Wedge and antiwedge products naturally perform union and intersection operations among all of these
4D Grassmann Algebra

- Scalar unit
- Four vectors: e_1, e_2, e_3, e_4
- Six bivectors: $e_{12}, e_{23}, e_{31}, e_{41}, e_{42}, e_{43}$
- Four antivectors: $\overline{e}_1, \overline{e}_2, \overline{e}_3, \overline{e}_4$
- Antiscalar unit (quadvector)
Homogeneous lines

- Take wedge product of two 4D points

\[
P = (P_x, P_y, P_z, 1) = P_x e_1 + P_y e_2 + P_z e_3 + e_4
\]

\[
Q = (Q_x, Q_y, Q_z, 1) = Q_x e_1 + Q_y e_2 + Q_z e_3 + e_4
\]
Homogeneous lines

\[P \wedge Q = (Q_x - P_x)e_{41} + (Q_y - P_y)e_{42} + (Q_z - P_z)e_{43} \]
\[+ (P_y Q_z - P_z Q_y)e_{23} + (P_z Q_x - P_x Q_z)e_{31} + (P_x Q_y - P_y Q_x)e_{12} \]

- This bivector spans a 2D plane in 4D
- In subspace where \(w = 1 \), this is a 3D line
Homogeneous lines

- The 4D bivector no longer contains any information about the two points used to create it
- Contrary to parametric origin / direction representation
Homogeneous lines

- The 4D bivector can be decomposed into two 3D components:
 - A tangent vector and a moment bivector
 - These are perpendicular

\[
P \wedge Q = (Q_x - P_x) e_{41} + (Q_y - P_y) e_{42} + (Q_z - P_z) e_{43} \\
+ (P_y Q_z - P_z Q_y) e_{23} + (P_z Q_x - P_x Q_z) e_{31} + (P_x Q_y - P_y Q_x) e_{12}
\]
Homogeneous lines

- **Tangent** \mathbf{T} **vector** is $\mathbf{Q}_{3D} - \mathbf{P}_{3D}$
- **Moment** \mathbf{M} **bivector** is $\mathbf{P}_{3D} \wedge \mathbf{Q}_{3D}$

\[
P \wedge Q = (Q_x - P_x) \mathbf{e}_{41} + (Q_y - P_y) \mathbf{e}_{42} + (Q_z - P_z) \mathbf{e}_{43} + (P_y Q_z - P_z Q_y) \mathbf{e}_{23} + (P_z Q_x - P_x Q_z) \mathbf{e}_{31} + (P_x Q_y - P_y Q_x) \mathbf{e}_{12}
\]
Moment bivector
Plücker coordinates

- Origin of Plücker coordinates revealed!
 - They are the coefficients of a 4D bivector
- A line L in Plücker coordinates is
 \[
 L = \{ Q - P : P \times Q \}
 \]

- A bunch of seemingly arbitrary formulas in Plücker coordinates will become clear
Homogeneous planes

- Take wedge product of three 4D points

\[P = (P_x, P_y, P_z, 1) = P_x e_1 + P_y e_2 + P_z e_3 + e_4 \]
\[Q = (Q_x, Q_y, Q_z, 1) = Q_x e_1 + Q_y e_2 + Q_z e_3 + e_4 \]
\[R = (R_x, R_y, R_z, 1) = R_x e_1 + R_y e_2 + R_z e_3 + e_4 \]
Homogeneous planes

\[P \wedge Q \wedge R = N_x \bar{e}_1 + N_y \bar{e}_2 + N_z \bar{e}_3 + D \bar{e}_4 \]

- \(\mathbf{N} \) is the 3D normal bivector
- \(\mathbf{D} \) is the offset from origin in units of \(\mathbf{N} \)

\[\mathbf{N} = P_{3D} \wedge Q_{3D} + Q_{3D} \wedge R_{3D} + R_{3D} \wedge P_{3D} \]

\[D = -P_{3D} \wedge Q_{3D} \wedge R_{3D} \]
Plane transformation

- A homogeneous plane is a 4D antivector
- It transforms by the inverse of a 4 x 4 matrix
 - Just like a 3D antivector transforms by the inverse of a 3 x 3 matrix
 - Orthogonality not common here due to translation in the matrix
Projective geometry

<table>
<thead>
<tr>
<th>4D Entity</th>
<th>3D Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector (1-space)</td>
<td>Point (0-space)</td>
</tr>
<tr>
<td>Bivector (2-space)</td>
<td>Line (1-space)</td>
</tr>
<tr>
<td>Trivector (3-space)</td>
<td>Plane (2-space)</td>
</tr>
</tbody>
</table>

- We always project onto the 3D subspace where $w = 1$
Geometric computation in 4D

- Wedge product
 - Multiply **two points** to get the line containing both points
 - Multiply **three points** to get the plane containing all three points
 - Multiply **a line and a point** to get the plane containing the line and the point
Geometric computation in 4D

- Antiwedge product
 - Multiply **two planes** to get the line where they intersect
 - Multiply **three planes** to get the point common to all three planes
 - Multiply **a line and a plane** to get the point where the line intersects the plane
Geometric computation in 4D

- Wedge or antiwedge product
 - Multiply **a point and a plane** to get the signed minimum distance between them in units of the normal magnitude
 - Multiply **two lines** to get a special signed crossing value
Product of two lines

- Wedge product gives an antiscalar (quadvector or 4D volume element)
- Antiwedge product gives a scalar
- Both have same sign and magnitude
- Grassmann treated scalars and antiscalars as the same thing
Product of two lines

- Let L_1 have tangent T_1 and moment M_1
- Let L_2 have tangent T_2 and moment M_2
- Then,

$$L_1 \lor L_2 = -(T_1 \lor M_2 + T_2 \lor M_1)$$
$$L_1 \land L_2 = -(T_1 \land M_2 + T_2 \land M_1)$$
Product of two lines

- The product of two lines gives a "crossing" relation
 - Positive value means clockwise crossing
 - Negative value means counterclockwise
 - Zero if lines intersect
Crossing relation

$L_1 \lor L_2 > 0$

$L_1 \lor L_2 < 0$
Distance between lines

- Product of two lines also relates to signed minimum distance between them

\[d = \frac{L_1 \lor L_2}{\|T_1 \land T_2\|} \]

- (Here, numerator is 4D antiwedge product, and denominator is 3D wedge product.)
Ray-triangle intersection

- Application of line-line product
- Classic barycentric calculation difficult due to floating-point round-off error
 - Along edge between two triangles, ray can miss both or hit both
 - Typical solution involves use of ugly epsilons
Ray-triangle intersection

- Calculate 4D bivectors for triangle edges and ray
 - Take antiwedge products between ray and three edges
 - Same sign for all three edges is a hit
 - Impossible to hit or miss both triangles sharing edge
 - Need to handle zero in consistent way
Weighting

- Points, lines, and planes have “weights” in homogeneous coordinates

<table>
<thead>
<tr>
<th>Entity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>w coordinate</td>
</tr>
<tr>
<td>Line</td>
<td>Tangent component T</td>
</tr>
<tr>
<td>Plane</td>
<td>x, y, z component</td>
</tr>
</tbody>
</table>
Weighting

- Mathematically, the weight components can be found by taking the antiwedge product with the antivector \((0,0,0,1)\)
- We would never really do that, though, because we can just look at the right coefficients
Normalized lines

- Tangent component has unit length
 - Magnitude of moment component is perpendicular distance to the origin
Normalized planes

- \((x,y,z)\) component has unit length
 - Wedge product with (normalized) point is perpendicular distance to plane
Programming considerations

• Convenient to create classes to represent entities of each grade
 • Vector4D
 • Bivector4D
 • Antivector4D
Programming considerations

- Fortunate happenstance that C++ has an overloadable operator ^ that looks like a wedge

- But be careful with operator precedence if you overload ^ to perform wedge product
 - Has lowest operator precedence, so get used to enclosing wedge products in parentheses
Combining wedge and antiwedge

- The same operator can be used for wedge product and antiwedge product
 - Either they both produce the same scalar and antiscalar magnitudes with the same sign
 - Or one of the products is identically zero
 - For example, you would always want the antiwedge product for two planes because the wedge product is zero for all inputs
Summary

<table>
<thead>
<tr>
<th>Old school</th>
<th>New school</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross product → axial vector</td>
<td>Wedge product → bivector</td>
</tr>
<tr>
<td>Dot product</td>
<td>Antiwedge vector / antivector</td>
</tr>
<tr>
<td>Scalar triple product</td>
<td>Triple wedge product</td>
</tr>
<tr>
<td>Plücker coordinates</td>
<td>4D bivectors</td>
</tr>
<tr>
<td>Operations in Plücker coordinates</td>
<td>4D wedge / antiwedge products</td>
</tr>
<tr>
<td>Transform normals with inverse transpose</td>
<td>Transform antivectors with adjugate transpose</td>
</tr>
</tbody>
</table>
• Slides available online at
 • https://terathon.com/lengyel/

• Contact
 • lengyel@terathon.com
 • @EricLengyel
Supplemental Slides
Example application

- Calculation of shadow region planes from light position and frustum edges

- Simply a wedge product
Points of closest approach

- Wedge product of line tangents gives complement of direction between closest points
Points of closest approach

- Plane containing this direction and first line also contains closest point on second line
Explicit formulas

- Define points \mathbf{P}, \mathbf{Q} and planes \mathbf{E}, \mathbf{F}, and line \mathbf{L}

$$\mathbf{P} = (P_x, P_y, P_z, 1) = P_x \mathbf{e}_1 + P_y \mathbf{e}_2 + P_z \mathbf{e}_3 + \mathbf{e}_4$$
$$\mathbf{Q} = (Q_x, Q_y, Q_z, 1) = Q_x \mathbf{e}_1 + Q_y \mathbf{e}_2 + Q_z \mathbf{e}_3 + \mathbf{e}_4$$
$$\mathbf{E} = (E_x, E_y, E_z, E_w) = E_x \overline{\mathbf{e}}_1 + E_y \overline{\mathbf{e}}_2 + E_z \overline{\mathbf{e}}_3 + E_w \overline{\mathbf{e}}_4$$
$$\mathbf{F} = (F_x, F_y, F_z, F_w) = F_x \overline{\mathbf{e}}_1 + F_y \overline{\mathbf{e}}_2 + F_z \overline{\mathbf{e}}_3 + F_w \overline{\mathbf{e}}_4$$
$$\mathbf{L} = T_x \mathbf{e}_{41} + T_y \mathbf{e}_{42} + T_z \mathbf{e}_{43} + M_x \mathbf{e}_{32} + M_y \mathbf{e}_{31} + M_z \mathbf{e}_{12}$$
Explicit formulas

- Product of two points

\[\mathbf{P} \wedge \mathbf{Q} = (Q_x - P_x) \mathbf{e}_{41} + (Q_y - P_y) \mathbf{e}_{42} + (Q_z - P_z) \mathbf{e}_{43} \]
\[+ (P_y Q_z - P_z Q_y) \mathbf{e}_{23} + (P_z Q_x - P_x Q_z) \mathbf{e}_{31} + (P_x Q_y - P_y Q_x) \mathbf{e}_{12} \]
Explicit formulas

- Product of two planes

\[E \lor F = (E_z F_y - E_y F_z) e_{41} + (E_x F_z - E_z F_x) e_{42} + (E_y F_x - E_x F_y) e_{43} \]
\[+ (E_x F_w - E_w F_x) e_{23} + (E_y F_w - E_w F_y) e_{31} + (E_z F_w - E_w F_z) e_{12} \]
Explicit formulas

- Product of line and point

\[\textbf{L} \wedge \textbf{P} = (T_y P_z - T_z P_y + M_x) \bar{\textbf{e}_1} + (T_z P_x - T_x P_z + M_y) \bar{\textbf{e}_2} + (T_x P_y - T_y P_x + M_z) \bar{\textbf{e}_3} + (-P_x M_x - P_y M_y - P_z M_z) \bar{\textbf{e}_4} \]
Explicit formulas

- Product of line and plane

\[
\mathbf{L} \lor \mathbf{E} = \left(M_z \mathbf{E}_y - M_y \mathbf{E}_z - T_x \mathbf{E}_w \right) \mathbf{e}_1 + \left(M_x \mathbf{E}_z - M_z \mathbf{E}_x - T_y \mathbf{E}_w \right) \mathbf{e}_2 \\
+ \left(M_y \mathbf{E}_x - M_x \mathbf{E}_y - T_z \mathbf{E}_w \right) \mathbf{e}_3 + \left(E_x T_x + E_y T_y + E_z T_z \right) \mathbf{e}_4
\]