
Foundations of
Projective Geometric Algebra

Eric Lengyel, Ph.D.

NASA Goddard Space Flight Center
May 10, 2024



About the Speaker

• Computer Scientist / Mathematician
• Working in industry since 1994
• Running company that specializes in 

digital typography and game engines
• Writing books



Subject of This Talk

• 4D rigid exterior algebra
• Homogeneous representation of 3D geometry
• Points, lines, planes
• Join, meet, projection, norm, distance, angle

• 4D rigid geometric algebra
• Euclidean isometries in 3D space
• Rotations, translations, screw transformations

• 5D conformal exterior algebra (briefly)
• Round points, dipoles, circles, spheres

• Details in PGA Illuminated



Exterior / Grassmann Algebra
• Wedge product ∧

• Combines dimensions of operands

• Vectors square to zero:

• Antisymmetric on vectors:

0=v v¡

= −a b b a¡ ¡

Sec. 2.1.1



Bivectors
• Wedge product of two vectors a and b

Sec. 2.1.2



Trivectors
• Wedge product of three vectors a, b, and c

Sec. 2.1.3



Pascal’s Triangle

Sec. 2.1.4



Rigid Exterior / Geometric Algebra
• Projective algebra with one extra dimension

• Contains points, lines, planes in 3D

• Can perform rotations, translations, screw transformations



4D Exterior Algebra

• Extends 4D vector space

• One scalar 1
• Four vector basis elements
• Six bivector basis elements
• Four trivector basis elements
• One antiscalar 𝟙𝟙
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4D Exterior Product



Complements
• Complement inverts full / empty dimensions
• Right complement denoted by overbar
• Left complement denoted by underbar
• For basis element u,

=u u¡ 1 =u u¡ 1

Sec. 2.2



Antiproducts
• Antiwedge product denoted by ¢

• Wedge product combines dimensions that are present
• Adds grades

• Antiwedge product combines dimensions that are absent
• Adds antigrades

Sec. 2.3



De Morgan Laws
• Every operation with “anti” in name satisfies a De Morgan law:

• To calculate anti-operation,
• Take a complement of each input
• Perform the regular operation
• Take opposite complement of the result

=a b a b¢ ¡ =a b a b¢ ¡



4D Exterior Antiproduct



Point

Sec. 2.4.1



Special Points
• The origin is simply the point e4

• Point with zero weight lies at infinity in (x, y, z) direction

• Points at infinity in opposite directions are equivalent



Line

( ) ( ) ( )
( ) ( ) ( )

41 42 43

23 31 12

x w x w y w y w z w z w

y z z y z x x z x y y x

q p p q q p p q q p p q
p q p q p q p q p q p q

= − + − + −

+ − + − + −

p q e e e
e e e

¡

0⋅ =v ml l
Sec. 2.4.2



Lines at Infinity
• Line with zero direction lies at infinity



Plane

( ) ( )
( ) ( )

1 2

3 4

vy z vz y mx vz x vx z my

vx y vy x mz mx x my y mz z

l p l p l l p l p l
l p l p l l p l p l p

= − + + − +

+ − + − + +

p e e
e e

l ¡

Sec. 2.4.3



Horizon
• Plane with zero normal lies at infinity

• Contains all points at infinity, all lines at infinity

• Given special name horizon

• Complement of origin

321wg e



Join

• Wedge product performs join operation

Sec. 2.5



Meet

• Antiwedge product performs meet operation



Duality
• Every object can be interpreted as two different things

• Every operation performs two different actions

• One interpretation corresponds to regular space

• The other interpretation corresponds to antispace

Sec. 2.6



Duality



Exomorphisms
• Given an n x n linear transformation m that operates on vectors

• The exomorphism M is the 2n x 2n matrix that operates on the 
whole algebra

• Exomorphism preserves structure under the wedge product:

( ) ( ) ( )=M a b Ma Mb¡ ¡

Sec. 2.7



Exomorphisms
• Matrix M is block diagonal

• Each block has columns given by wedge products of
columns of the original matrix m

• These are called compound matrices of m





Translation Exomorphism
1 0 0
0 1 0
0 0 1
0 0 0 1

x

y

z

t
t
t

 
 
 =
 
  

m

( )2

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

z y

z x

y x

C
t t

t t
t t

 
 
 
 

=  − 
− 

 − 

m

( )3

1 0 0 0
0 1 0 0
0 0 1 0

1x y z

C

t t t

 
 
 =
 
 − − − 

m



The Metric Tensor
• n x n matrix that defines dot products of vectors

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 
 
 =
 
 
 

g

ij i j≡ ⋅v vg

1 1 1⋅ = +e e

2 2 1⋅ = +e e

3 3 1⋅ = +e e

4 4 0⋅ =e e

Sec. 2.8.1



Metric Exomorphism
• The metric tensor is a linear transformation

• Thus, it can be extended to a full exomorphism matrix G

• There is also a metric antiexomorphism, or just “antimetric”,
that satisfies

= =u Gu Gu

Sec. 2.8.2



Metric and Antimetric

( )det=G IG g



Bulk and Weight
• Multiplying 2n-dimensional multivector by metric or antimetric 

partitions into two pieces

• Bulk    All components without factor e4

• Weight    All components with factor e4

=u Gu«

=u u¬ 

Sec. 2.8.3



Bulk and Weight of Point

1 2 3x y zp p p= + +p e e e«

4wp=p e¬



Bulk and Weight of Line

23 31 12mx my mzl l l= + +e e e«l

41 42 43vx vy vzl l l= + +e e e¬l



Bulk and Weight of Plane

321wg=g e«

423 431 412x y zg g g= + +g e e e¬



Bulk and Weight
• Bulk contains positional information

• Weight contains directional information

• If the bulk is zero, then the object contains the origin

• If the weight zero, then the horizon contains the object



Inner Product
• Dot product defined by metric:

• Antidot product defined by antimetric:

• Satisfies De Morgan law:

( )T=a b a Gb 1£

( )T=a b a b¤ 1

=a b a b¤ £

Sec. 2.9



Bulk and Weight Norms
• Two dot products produce two norms

• Bulk norm:

• Weight norm:

=u u u« £

=u u u¬ ¤

Sec. 2.10.1



Bulk and Weight Norms



Unitization
• An object is unitized when its weight has magnitude one

Sec. 2.10.2



Geometric Norm
• Bulk and weight norms by themselves not meaningful
• But add them, and result is a homogeneous magnitude
• Represents distance from origin
• Called the geometric norm

• Can be unitized by making weight one

= + = +u u u u u u u« ¬ £ ¤

Sec. 2.10.3



Geometric Norm



Euclidean Distance

Sec. 2.11



Euclidean Angle

Sec. 2.13.3



Bulk and Weight Duals
• Multiply by metric or antimetric, then take complement

• Bulk dual:

• Weight dual:

=u Guµ

=u u¶ G

Sec. 2.12



Bulk and Weight Duals



Interior Products
• Two exterior products combined with two duals
• Four interior products

• Bulk contraction
• Weight contraction
• Bulk expansion
• Weight expansion

a bµ¡
a b¶¡

a bµ¢
a b¶¢

Sec. 2.13



Weight Expansion

Sec. 2.13.5



Orthogonal Projection

Sec. 2.13.6



Central Projection



Orthogonal Antiprojection



Central Antiprojection



Geometric Product
• Historically denoted by juxtaposition without symbol
• But there is always product and antiproduct
• We use upward and downward wedge with dot inside

• Geometric product

• Geometric antiproduct

• “Wedge-dot” and “Antiwedge-dot”

a b¥

a b¦

Sec. 3.1



Geometric Product
• Defined by slightly different property compared to

exterior product

• For vectors,

• Geometric product depends on the metric

=v v v v¥ £



4D Geometric Product



Geometric Antiproduct
• Defined by De Morgan law:

• Antivector u squares to antidot product:

=a b a b¦ ¥

=u u u u¦ ¤



4D Geometric Antiproduct



Geometric Product
• Geometric product in 4D space fixes the origin
• Cannot perform transformations we want

• Geometric antiproduct performs Euclidean isometries
• Uses sandwiching similar to quaternions

Sec. 3.5



Proper Euclidean Isometries



Improper Euclidean Isometries



Reverse and Antireverse
• Reverse ũ multiplies vectors in reverse order

• (with geometric product)

• Antireverse ṵ multiplies antivectors in reverse order
• (with geometric antiproduct)

Sec. 3.4



Geometric Antiproduct
• Sandwiches with geometric antiproduct perform

Euclidean isometries

• Motor = MOtion operaTOR

• Flector = reFLECtion operaTOR



Motor
• General form of a motor:

• Performs any combination of rotations and translations

′ =u Q u Q


¦ ¦

Sec. 3.6.1



Motor

( )[ ]exp sin cos sin cosδ φ φ δ φ δ φ φ= + = − − +Q 1 l l l¶
¦ 1 ¦ 1



Flector
• General form of a flector:

• Performs any combination of rotoreflections

Sec. 3.7.1



Flector

sin cosφ φ= +F p g



Motor-Point Transformation
• 25 multiply-adds:

• 3x4 matrix transformation only requires 12 multiply-adds

( )2xyz xyz vw mw w

w w

Q Q p
p p
′ = + + × −
′ =

p p a v a v

xyz wp= × +a v p m
( ), ,vx vy vzQ Q Q=v

( ), ,mx my mzQ Q Q=m

Sec. 3.6.5



Motor-Line Transformation
• 54 multiply-adds:

• 6x6 matrix transformation only requires 27 multiply-adds

( )2 vwQ′ = + + ×v v a v al l

( ) ( )[ ]2 mw vwQ Q′ = + + + + × + + ×m m a b c v b c m al l

= × va v l = × mb v l = × vc m l



Motor-Plane Transformation
• 35 multiply-adds:

• 4x4 matrix transformation only requires 13 multiply-adds

( )2xyz xyz vwQ′ = + + ×g g a v a

( ) ( )[ ]2w w xyz mw xyz vw xyzg g Q Q′ = + × + ⋅ − ⋅m g g v m g

xyz= ×a v g



Motor to Matrix
( ) ( )

( ) ( )
( ) ( )

2 2

2 2

2 2

1 2 2 2 2

2 1 2 2 2

2 2 1 2 2

0 0 0 1

vy vz vx vy vz vx vy mz vz my

vx vy vz vx vy vz vz mx vx mz

vz vx vy vz vx vy vx my vy mx

Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q Q Q

 − + −
 

− + − 
=  

− + − 
 
 

QA

( )
( )
( )

0 2 2 2

2 0 2 2

2 2 0 2

0 0 0 0

vz vw vy vw vw mx vx mw

vz vw vx vw vw my vy mw

vy vw vx vw vw mz vz mw

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

Q Q Q Q Q Q Q Q

 − −
 

− − 
=  

− − 
 
 

QB

= +Q Q QM A B 1− = −Q Q QM A B



Motor Composition
• 48 multiply-adds:

• Composition of equiv 3x4 matrices requires 33 multiply-adds

( )
( )
( )
( )
( )

41

42

43

23

vw vx vx vw vy vz vz vy

vw vy vx vz vy vw vz vx

vw vz vx vy vy vx vz vw

vw vw vx vx vy vy vz vz

mw vx mx vw my vz mz vy vw mx vx mw vy mz vz my

mw vy mx vz

Q R Q R Q R Q R
Q R Q R Q R Q R
Q R Q R Q R Q R
Q R Q R Q R Q R
Q R Q R Q R Q R Q R Q R Q R Q R
Q R Q R Q

= + + −

+ − + +

+ + − +

+ − − −

+ + + − + + + −

+ − +

Q R e
e
e

e

¦

1

( )
( )
( )

31

12

my vw mz vx vw my vx mz vy mw vz mx

mw vz mx vy my vx mz vw vw mz vx my vy mx vz mw

mw vw mx vx my vy mz vz vw mw vx mx vy my vz mz

R Q R Q R Q R Q R Q R
Q R Q R Q R Q R Q R Q R Q R Q R
Q R Q R Q R Q R Q R Q R Q R Q R

+ + − + +

+ + − + + + − +

+ − − − + − − −

e
e
1



Matrix Advantages
• Can represent more transformations
• Can read off origin and axis directions in transformed space
• Faster to transform objects
• Faster to compose



Motor Advantages
• Smaller storage requirements

• Usually 8 floats, but can reduce to 6

• Inversion is trivial
• Just reverse, negating bivector components

• Better parameterization

• Better interpolation properties



Conformal Geometric Algebra
• Adds two extra projective dimensions

• One is stereographic projection

• Can represent round objects
• With real, imaginary, or null radii

• Flat objects are round objects with infinite radius

Sec. 4.1



Round Point
• Vector

Sec. 4.2.1



Dipole
• Bivector



Circle
• Trivector



Sphere
• Quadrivector



Operations
• Contains all operations from projective algebra
• Plus many conformal operations as well

Sec. 5.1



Circle Rotations

Sec. 5.1.3



References
• Projective Geometric Algebra Illuminated
• projectivegeometricalgebra.org



Contact
• lengyel@terathon.com

• Twitter: @EricLengyel

• Discord: https://discord.gg/CJqtbBcPtQ
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