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Content of this Talk

● Real-world problems from game dev
● Small problems, that is, and easy to state

● Actual solutions used in shipping games
● Using math that’s not too advanced

● Strategies for finding elegant solutions



Occlusion boxes

● Plain boxes put in world as occluders

● Extrude away from camera to form occluded 
region of space where objects don’t need to be 
rendered

● How to do this most efficiently?



Camera

Occluder



Occlusion boxes

● Could classify box faces as front/back
and find silhouette edges
● Similar to stencil shadow technique

● A better solution accounts for small
solution space



Occlusion boxes

● There are exactly 26 possible silhouettes

● Three possible states for camera position on 
three different axes
● position < box min
● position > box max
● box min ≤ position ≤ box max
● Inside box excluded



maxx x>minx x<
min maxx x x≤ ≤

min maxy y y≤ ≤

miny y<

maxy y>

condition code

x > xmax 0x01
x < xmin 0x02

y > ymax 0x04
y < ymin 0x08

z > zmax 0x10
z < zmin 0x20



Finite classifications

Marching Cubes, fixed polarity
(256 cases, 18 classes) Transvoxel Algorithm

(512 cases, 73 classes)

http://www.terathon.com/voxels/


Occlusion boxes

● Calculate camera position state and use
table to get silhouette

● Always a closed convex polygon with
exactly 4 or 6 vertices and edges



Occlusion boxes
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// Upper 3 bits = vertex count, lower 5 bits = polygon index
const unsigned_int8 occlusionPolygonIndex[43] =
{

0x00, 0x80, 0x81, 0x00, 0x82, 0xC9, 0xC8, 0x00, 0x83, 0xC7, 0xC6, 0x00, 0x00, 0x00, 0x00, 0x00,
0x84, 0xCF, 0xCE, 0x00, 0xD1, 0xD9, 0xD8, 0x00, 0xD0, 0xD7, 0xD6, 0x00, 0x00, 0x00, 0x00, 0x00,
0x85, 0xCB, 0xCA, 0x00, 0xCD, 0xD5, 0xD4, 0x00, 0xCC, 0xD3, 0xD2

};

// All 26 polygons with vertex indexes from diagram on left
const unsigned_int8 occlusionVertexIndex[26][6] =
{

{1, 3, 7, 5},
{2, 0, 4, 6},
{3, 2, 6, 7},
{0, 1, 5, 4},
{4, 5, 7, 6},
{1, 0, 2, 3},
{2, 0, 1, 5, 4, 6},
{0, 1, 3, 7, 5, 4},
{3, 2, 0, 4, 6, 7},
{1, 3, 2, 6, 7, 5},
{1, 0, 4, 6, 2, 3},
{5, 1, 0, 2, 3, 7},
{4, 0, 2, 3, 1, 5},
{0, 2, 6, 7, 3, 1},
{0, 4, 5, 7, 6, 2},
{4, 5, 1, 3, 7, 6},
{1, 5, 7, 6, 4, 0},
{5, 7, 3, 2, 6, 4},
{3, 1, 5, 4, 6, 2},
{2, 3, 7, 5, 4, 0},
{1, 0, 4, 6, 7, 3},
{0, 2, 6, 7, 5, 1},
{7, 6, 2, 0, 1, 5},
{6, 4, 0, 1, 3, 7},
{5, 7, 3, 2, 0, 4},
{4, 5, 1, 3, 2, 6}

};



Occlusion boxes

● Any silhouette edge that is off screen can be 
eliminated to make occlusion region larger

● Gives occluder infinite extent in that direction

● Allows more objects to be occluded because 
they must be completely inside extruded 
silhouette to be hidden



Occlusion boxes

● Silhouette edge is culled if both vertices on 
negative side of some frustum plane

● And extruded plane normal and frustum plane 
normal have positive dot product



Camera

Occluder



Occlusion boxes

● Strategy:

Look for ways to classify solutions



Oblique near plane trick

● Sometimes need a clipping plane
for a flat surface in scene

● For example, water or mirror
● Prevent submerged objects from

appearing in reflection



Ordinary frustum Oblique near plane



Oblique near plane trick

● Hardware clipping plane?
● May not even be supported
● Requires shader modification
● Could be slower



Oblique near plane trick

● Extra clipping plane almost
always redundant with
near plane

● Don’t need to clip to both



Oblique near plane trick

● Possible to modify projection matrix

● Move near plane to arbitrary location

● No extra clipping plane, no redundancy



Oblique near plane trick

● In normalized device coordinates (NDC),
near plane has coordinates (0,0,1,1)



Oblique near plane trick

● Planes (row antivectors) are transformed from 
NDC to camera space by right multiplication by 
the projection matrix

● So the plane (0, 0, 1, 1) becomes
M3 + M4, where Mi is the i-th row of the 
projection matrix



Oblique near plane trick

● M4 must remain (0, 0, −1, 0) so that
perspective correction still works right

● Let C = (Cx, Cy, Cz, Cw) be the camera-space 
plane that we want to clip against
● Assume Cw < 0, camera on negative side

● We must have C = M3 + (0, 0, −1, 0)



Oblique near plane trick

● M3 = C − M4 = (Cx, Cy, Cz + 1, Cw)

● This matrix maps points on the plane C
to the plane z = −1 in NDC
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Oblique near plane trick

● But what happens to the far plane?
● F = M4 − M3 = 2M4 − C

● Near plane and (negative) far plane differ
only in the z coordinate

● Thus, they must coincide where they
intersect the z = 0 plane



Oblique near plane trick



Oblique near plane trick

● Far plane is a complete mess

● Depths in NDC no longer represent distance 
from camera plane, but correspond to some 
skewed direction between near and far planes

● We can minimize the effect,
and in practice it’s not so bad



Oblique near plane trick

● We still have a free parameter:
the clipping plane C can be scaled

● Scaling C has the effect of changing the 
orientation of the far plane F

● We want to make the new view frustum as
small as possible while still including the 
conventional view frustum



Oblique near plane trick

● Let F = 2M4 − aC
● Choose the point Q which lies furthest opposite 

the near plane in NDC:

● Solve for a such that Q lies in plane F:

( ) ( )( )1 sgn ,sgn ,1,1x yC C−= ⋅Q M

4a ∧
=

∧
M Q
C Q



Oblique near plane trick

● Near plane doesn’t move, but far plane
becomes optimal



Oblique near plane trick

● Works for any perspective projection matrix
● Even with infinite far depth

● More analysis available in “Oblique Depth 
Projection and View Frustum Clipping”, Journal 
of Game Development, Vol. 1, No. 2.

http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
http://www.terathon.com/lengyel/Lengyel-Oblique.pdf


Oblique near plane trick

● Strategy:

Get the big picture



Fog bank occlusion

● Consider fog bank bounded by plane

● Linear density gradient with increasing depth
● Perpendicular to plane
● Zero density at plane



Fog bank occlusion



Fog bank occlusion



Fog bank occlusion

● For a given camera position, we want to cull 
objects that are completely fogged

● Surface beyond which objects are completely 
fogged is interesting...



Fog bank occlusion






Fog bank occlusion

● Culling against that curve is impractical

● Instead, calculate its maximum extent parallel 
to the fog plane

● Then cull against plane perpendicular to fog 
plane and camera view direction at that distance



Fog bank occlusion



Fog bank occlusion

● F = fog plane, normal outward
● C = camera position
● P = point being shaded
● V = C − P
● a = linear density coefficient



Fog bank occlusion

● Density as function of depth:

● Log light fraction g(P) for given C and P:†

( ) ( )aρ = − ∧P F P

†See “Unified Distance Formulas for Halfspace Fog”, Journal of Graphics Tools, Vol. 12, No. 2 (2007). 

( )
2

g a ∧ + ∧
= −

F P F CP V

http://www.terathon.com/lengyel/Lengyel-UnifiedFog.pdf


Fog bank occlusion

● Set g(P) to log of small enough fraction to be 
considered fully fogged

● For example: g(P) = −log(1/256)

● This is constant



Fog bank occlusion

● For given C, we need to find P with the 
maximum horizontal distance d from C that also 
satisfies

( )
2

g a ∧ + ∧
= −

F P F CP V



Fog bank occlusion

● So express d as a function of P and find the 
zeros of the derivative, right?

● Turns out to be a huge mess

● Not clear that good solution exists



Fog bank occlusion

● Insight: instead of using independent variable P, 
express F ∧ P as a fraction of F ∧ C

( ) ( )( )1
2

tg a + ∧
= −

F CP V

( )t∧ = ∧F P F C



Fog bank occlusion

( ) ( )2 22 2 1d t= + − ∧V F C



Fog bank occlusion

● Can now write g(P) as follows

● And solve for d2:

( ) ( )( ) ( ) ( )2 221 1
2
ag t d t= − + ∧ + − ∧P F C F C

( ) ( )
( ) ( )

2
2 22

2 2 1
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md t
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F C
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a
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Fog bank occlusion

● Take derivative, set to zero, simplify:

● Now need to solve quartic polynomial

( )

2

4

mk =
∧F C

4 32 2 1 0t t t k+ − + − =



Fog bank occlusion

● Know what your functions look like!

● Always k at t = 1, local min at t = 1/2



Fog bank occlusion

● If function is negative at t = 1/2,
then solution exists
● Happens exactly when k < 27/16

● Tempting to calculate with closed-form solution 
to quartic

● But almost always better to use
Newton’s method, especially in this case



Fog bank occlusion

● Newton’s method: ( )
( )1i i

f tt t
f t+ = −
′



Fog bank occlusion

● In our case,

● Start with t0 = 1:

( ) 3 24 6 2f t t t′ = + −

( )
( )
1
1 8

f k
f

=
′ =



Fog bank occlusion

● Calculate first iteration explicitly:

● Newton’s method converges very quickly
with 1–2 more iterations

1 1
8
kt = −



Fog bank occlusion

● Plug t back into function for d2 to get
culling distance

● If d2 > 0 when t = 0, possible larger
culling distance

( ) ( )
( ) ( )

2
2 22

2 2 1
1

md t
t

= − − ∧
+ ∧

F C
F C



Fog bank occlusion

● Solution exists at t = 0 when k > 1

● Solution exists deeper when k < 27/16

● Take the larger distance if both exist



Fog bank occlusion

27
16k > 1k <[ ]27

161,k∈



Fog bank occlusion

● Strategy:

Eliminate variables
Know what functions look like
Embrace Newton’s method



Contact

● lengyel@terathon.com

● https://terathon.com/lengyel/

● @EricLengyel

https://terathon.com/lengyel/


Supplemental slides

● Bézier animation curves
● Floor and ceiling functions
● Cross product trick
● Bit manipulation tricks



Bézier animation curves

● Another note about Newton’s method

● Cubic 2D Bézier curves often used to animate 
some component of an object’s transform

● Position x, y, z or rotation angle, for example



Bézier animation curves

● 2D coordinates on curve are time t and
some scalar value v

● t is not the parameter along the curve

● Big source of confusion in data exchange



Bézier animation curves

● Control points specified in (t, v) space

● Time coordinates increase monotonically





Bézier animation curves

● To evaluate the value of a curve P(s)
at a given time t, it’s necessary to find the 
parameter s along the curve for which Pt(s) = t

● Requires solving a cubic polynomial

● Newton’s method perfect for this case



Bézier animation curves

● For details, see Track structure
in OpenGEX Specification

● opengex.org

http://opengex.org/


Floor and ceiling

● Not all CPUs have floating-point 
floor/ceil/trunc/round instructions

● Need to implement with ordinary math

● Needs to be fast, no FP/int conversions



Floor function

● 32-bit float has 23 bits in mantissa

● Thus, any value greater than or equal to 223 is 
necessarily an integer

● No bits left for any fractional part



Floor function

● Trick is to add and subtract 223

● The addition causes all fraction bits
to be shifted out the right end

● The subtraction shifts zeros back into the space 
previously occupied by the fraction



Floor function

● When we add 223, the original number is 
rounded to the nearest integer + 223

● If result is greater than original number, then 
simply subtract one to get floor



Floor function

● What about negative numbers?

● Use the same trick, but subtract 223 first, and 
then add it back

● Can combine for all possible inputs



Floor function
__m128 floor(__m128 x)

{

__m128 one = {0x3F800000};

__m128 two23 = {0x4B000000};

__m128 f = _mm_sub_ps(_mm_add_ps(f, two23), two23);

f = _mm_add_ps(_mm_sub_ps(x, two23), two23);

f = _mm_sub_ps(f, _mm_and_ps(one, _mm_cmplt_ps(x, f)));

return (f);

}



Floor function

● But wait, this fails for some very large inputs 
(bigger than 223)

● All of these inputs are already integers!

● They must be if they’re bigger than 223



Floor function

● So just return the input if it’s > 223

__m128 sgn = {0x80000000};

__m128 msk = _mm_cmplt_ps(two23, _mm_andnot_ps(sgn, x));

f = _mm_or_ps(_mm_andnot_ps(msk, f), _mm_and_ps(msk, x));



Ceiling function

● Instead of subtracting one if result is greater 
than input, add one if result is less than input

f = _mm_add_ps(f, _mm_and_ps(one, _mm_cmplt_ps(f, x)));



Floor and ceiling

● Strategy:

Reduce problem domain



Cross product trick

● Cross product V × W given by:

V.yzx * W.zxy − W.zxy * V.yzx

● Two mults, one sub, four shuffles



Cross product trick

● Can do this instead:

(V * W.yzx − V.yzx * W).yzx

● Two mults, one sub, three shuffles
● And same shuffle each time



Bit manipulation tricks

● Range checks
● Non-branching calculations
● Logic formulas



Integer range checks

● Integer range checks can always be done with a 
single comparison:

(unsigned) (x - min) <= (unsigned) (max - min)



Non-branching calculations

● Using logic tricks to avoid branches in
integer calculations

● Many involve using sign bit in clever way

● Also useful to know  −x == ~x + 1



Non-branching calculations

● Helps scheduling, increases ILP

● Reduces pollution in branch history table

● But can obfuscate code
● Use where performance is very important
● Don’t bother elsewhere



Clever uses of sign bit

● if (a < 0) ++x;

● Replace with:

● x -= a >> 31; // 32-bit ints



Right-shifting negative integers

● Shifting n-bit int right by n − 1 bits:
● All zeros for positive ints (or zero)
● All ones for negative ints

● C++ standard says a >> 31 is “implementation-
defined” if a is negative



Right-shifting negative integers

● Any sensible compiler generates instruction that 
replicates sign bit

● To avoid issue in this case, could also use:

● x += (uint32) a >> 31



Predicates for 32-bit signed ints
● (x == 0) lzcnt(x) >> 5

● (x != 0) (lzcnt(x) >> 5) ^ 1

● (x < 0) (uint32) x >> 31

● (x > 0) (uint32) -x >> 31

● (x == y) lzcnt(x - y) >> 5

● (x != y) (uint32) ((x - y) | (y - x)) >> 31

● lzcnt() is leading zero count



Absolute value

● y = x >> 31

● abs(x) = (x ^ y) - y

● Because -x = ~x + 1
= x ^ 0xFFFFFFFF - 0xFFFFFFFF



Conditional negation

● Same trick can be used to negate
for any bool condition:

● if (condition) x = -x;

● x = (x ^ -condition) + condition



Logic Formulas
Formula Operation / Effect Notes

x & (x - 1) Clear lowest 1 bit. If result is 0, then x is 2n.

x | (x + 1) Set lowest 0 bit.

x | (x - 1) Set all bits to right of lowest 1 bit.

x & (x + 1) Clear all bits to right of lowest 0 bit. If result is 0, then x is 2n − 1.

x & -x Extract lowest 1 bit.

~x & (x + 1) Extract lowest 0 bit (as a 1 bit).

~x | (x - 1) Create mask for bits other than lowest 1 bit.

x | ~(x + 1) Create mask for bits other than lowest 0 bit.

x | -x Create mask for bits left of lowest 1 bit, inclusive.

x ^ -x Create mask for bits left of lowest 1 bit, exclusive.

~x | (x + 1) Create mask for bits left of lowest 0 bit, inclusive.

~x ^ (x + 1) Create mask for bits left of lowest 0 bit, exclusive. Also x ≡ (x + 1).

x ^ (x - 1) Create mask for bits right of lowest 1 bit, inclusive. 0 becomes −1.

~x & (x - 1) Create mask for bits right of lowest 1 bit, exclusive. 0 becomes −1.

x ^ (x + 1) Create mask for bits right of lowest 0 bit, inclusive. remains −1.

x & (~x - 1) Create mask for bits right of lowest 0 bit, exclusive. remains −1.

This table from “Bit Hacks for Games”, Game Engine Gems 2, A K Peters, 2011.

http://www.amazon.com/dp/1568814372/?tag=terathon-20


Contact

● lengyel@terathon.com

● https://terathon.com/lengyel/

● @EricLengyel

https://terathon.com/lengyel/
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