
Game Math Case Studies

Eric Lengyel, PhD
Terathon Software

Content of this Talk

● Real-world problems from game dev
● Small problems, that is, and easy to state

● Actual solutions used in shipping games
● Using math that’s not too advanced

● Strategies for finding elegant solutions

Occlusion boxes

● Plain boxes put in world as occluders

● Extrude away from camera to form occluded
region of space where objects don’t need to be
rendered

● How to do this most efficiently?

Camera

Occluder

Occlusion boxes

● Could classify box faces as front/back
and find silhouette edges
● Similar to stencil shadow technique

● A better solution accounts for small
solution space

Occlusion boxes

● There are exactly 26 possible silhouettes

● Three possible states for camera position on
three different axes
● position < box min
● position > box max
● box min ≤ position ≤ box max
● Inside box excluded

maxx x>minx x<
min maxx x x≤ ≤

min maxy y y≤ ≤

miny y<

maxy y>

condition code

x > xmax 0x01
x < xmin 0x02

y > ymax 0x04
y < ymin 0x08

z > zmax 0x10
z < zmin 0x20

Finite classifications

Marching Cubes, fixed polarity
(256 cases, 18 classes) Transvoxel Algorithm

(512 cases, 73 classes)

http://www.terathon.com/voxels/

Occlusion boxes

● Calculate camera position state and use
table to get silhouette

● Always a closed convex polygon with
exactly 4 or 6 vertices and edges

Occlusion boxes

0
1

2
3

4
5

6 7

x

y
z

// Upper 3 bits = vertex count, lower 5 bits = polygon index
const unsigned_int8 occlusionPolygonIndex[43] =
{

0x00, 0x80, 0x81, 0x00, 0x82, 0xC9, 0xC8, 0x00, 0x83, 0xC7, 0xC6, 0x00, 0x00, 0x00, 0x00, 0x00,
0x84, 0xCF, 0xCE, 0x00, 0xD1, 0xD9, 0xD8, 0x00, 0xD0, 0xD7, 0xD6, 0x00, 0x00, 0x00, 0x00, 0x00,
0x85, 0xCB, 0xCA, 0x00, 0xCD, 0xD5, 0xD4, 0x00, 0xCC, 0xD3, 0xD2

};

// All 26 polygons with vertex indexes from diagram on left
const unsigned_int8 occlusionVertexIndex[26][6] =
{

{1, 3, 7, 5},
{2, 0, 4, 6},
{3, 2, 6, 7},
{0, 1, 5, 4},
{4, 5, 7, 6},
{1, 0, 2, 3},
{2, 0, 1, 5, 4, 6},
{0, 1, 3, 7, 5, 4},
{3, 2, 0, 4, 6, 7},
{1, 3, 2, 6, 7, 5},
{1, 0, 4, 6, 2, 3},
{5, 1, 0, 2, 3, 7},
{4, 0, 2, 3, 1, 5},
{0, 2, 6, 7, 3, 1},
{0, 4, 5, 7, 6, 2},
{4, 5, 1, 3, 7, 6},
{1, 5, 7, 6, 4, 0},
{5, 7, 3, 2, 6, 4},
{3, 1, 5, 4, 6, 2},
{2, 3, 7, 5, 4, 0},
{1, 0, 4, 6, 7, 3},
{0, 2, 6, 7, 5, 1},
{7, 6, 2, 0, 1, 5},
{6, 4, 0, 1, 3, 7},
{5, 7, 3, 2, 0, 4},
{4, 5, 1, 3, 2, 6}

};

Occlusion boxes

● Any silhouette edge that is off screen can be
eliminated to make occlusion region larger

● Gives occluder infinite extent in that direction

● Allows more objects to be occluded because
they must be completely inside extruded
silhouette to be hidden

Occlusion boxes

● Silhouette edge is culled if both vertices on
negative side of some frustum plane

● And extruded plane normal and frustum plane
normal have positive dot product

Camera

Occluder

Occlusion boxes

● Strategy:

Look for ways to classify solutions

Oblique near plane trick

● Sometimes need a clipping plane
for a flat surface in scene

● For example, water or mirror
● Prevent submerged objects from

appearing in reflection

Ordinary frustum Oblique near plane

Oblique near plane trick

● Hardware clipping plane?
● May not even be supported
● Requires shader modification
● Could be slower

Oblique near plane trick

● Extra clipping plane almost
always redundant with
near plane

● Don’t need to clip to both

Oblique near plane trick

● Possible to modify projection matrix

● Move near plane to arbitrary location

● No extra clipping plane, no redundancy

Oblique near plane trick

● In normalized device coordinates (NDC),
near plane has coordinates (0,0,1,1)

Oblique near plane trick

● Planes (row antivectors) are transformed from
NDC to camera space by right multiplication by
the projection matrix

● So the plane (0, 0, 1, 1) becomes
M3 + M4, where Mi is the i-th row of the
projection matrix

Oblique near plane trick

● M4 must remain (0, 0, −1, 0) so that
perspective correction still works right

● Let C = (Cx, Cy, Cz, Cw) be the camera-space
plane that we want to clip against
● Assume Cw < 0, camera on negative side

● We must have C = M3 + (0, 0, −1, 0)

Oblique near plane trick

● M3 = C − M4 = (Cx, Cy, Cz + 1, Cw)

● This matrix maps points on the plane C
to the plane z = −1 in NDC

0 0 0
0 0 0

1
0 0 1 0

x y z w

e
e a

C C C C

 
 
 =

+ 
 − 

M

Oblique near plane trick

● But what happens to the far plane?
● F = M4 − M3 = 2M4 − C

● Near plane and (negative) far plane differ
only in the z coordinate

● Thus, they must coincide where they
intersect the z = 0 plane

Oblique near plane trick

Oblique near plane trick

● Far plane is a complete mess

● Depths in NDC no longer represent distance
from camera plane, but correspond to some
skewed direction between near and far planes

● We can minimize the effect,
and in practice it’s not so bad

Oblique near plane trick

● We still have a free parameter:
the clipping plane C can be scaled

● Scaling C has the effect of changing the
orientation of the far plane F

● We want to make the new view frustum as
small as possible while still including the
conventional view frustum

Oblique near plane trick

● Let F = 2M4 − aC
● Choose the point Q which lies furthest opposite

the near plane in NDC:

● Solve for a such that Q lies in plane F:

() ()()1 sgn ,sgn ,1,1x yC C−= ⋅Q M

4a ∧
=

∧
M Q
C Q

Oblique near plane trick

● Near plane doesn’t move, but far plane
becomes optimal

Oblique near plane trick

● Works for any perspective projection matrix
● Even with infinite far depth

● More analysis available in “Oblique Depth
Projection and View Frustum Clipping”, Journal
of Game Development, Vol. 1, No. 2.

http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
http://www.terathon.com/lengyel/Lengyel-Oblique.pdf

Oblique near plane trick

● Strategy:

Get the big picture

Fog bank occlusion

● Consider fog bank bounded by plane

● Linear density gradient with increasing depth
● Perpendicular to plane
● Zero density at plane

Fog bank occlusion

Fog bank occlusion

Fog bank occlusion

● For a given camera position, we want to cull
objects that are completely fogged

● Surface beyond which objects are completely
fogged is interesting...

Fog bank occlusion

Fog bank occlusion

● Culling against that curve is impractical

● Instead, calculate its maximum extent parallel
to the fog plane

● Then cull against plane perpendicular to fog
plane and camera view direction at that distance

Fog bank occlusion

Fog bank occlusion

● F = fog plane, normal outward
● C = camera position
● P = point being shaded
● V = C − P
● a = linear density coefficient

Fog bank occlusion

● Density as function of depth:

● Log light fraction g(P) for given C and P:†

() ()aρ = − ∧P F P

†See “Unified Distance Formulas for Halfspace Fog”, Journal of Graphics Tools, Vol. 12, No. 2 (2007).

()
2

g a ∧ + ∧
= −

F P F CP V

http://www.terathon.com/lengyel/Lengyel-UnifiedFog.pdf

Fog bank occlusion

● Set g(P) to log of small enough fraction to be
considered fully fogged

● For example: g(P) = −log(1/256)

● This is constant

Fog bank occlusion

● For given C, we need to find P with the
maximum horizontal distance d from C that also
satisfies

()
2

g a ∧ + ∧
= −

F P F CP V

Fog bank occlusion

● So express d as a function of P and find the
zeros of the derivative, right?

● Turns out to be a huge mess

● Not clear that good solution exists

Fog bank occlusion

● Insight: instead of using independent variable P,
express F ∧ P as a fraction of F ∧ C

() ()()1
2

tg a + ∧
= −

F CP V

()t∧ = ∧F P F C

Fog bank occlusion

() ()2 22 2 1d t= + − ∧V F C

Fog bank occlusion

● Can now write g(P) as follows

● And solve for d2:

() ()() () ()2 221 1
2
ag t d t= − + ∧ + − ∧P F C F C

() ()
() ()

2
2 22

2 2 1
1

md t
t

= − − ∧
+ ∧

F C
F C

()2gm
a

=
P

Fog bank occlusion

● Take derivative, set to zero, simplify:

● Now need to solve quartic polynomial

()

2

4

mk =
∧F C

4 32 2 1 0t t t k+ − + − =

Fog bank occlusion

● Know what your functions look like!

● Always k at t = 1, local min at t = 1/2

Fog bank occlusion

● If function is negative at t = 1/2,
then solution exists
● Happens exactly when k < 27/16

● Tempting to calculate with closed-form solution
to quartic

● But almost always better to use
Newton’s method, especially in this case

Fog bank occlusion

● Newton’s method: ()
()1i i

f tt t
f t+ = −
′

Fog bank occlusion

● In our case,

● Start with t0 = 1:

() 3 24 6 2f t t t′ = + −

()
()
1
1 8

f k
f

=
′ =

Fog bank occlusion

● Calculate first iteration explicitly:

● Newton’s method converges very quickly
with 1–2 more iterations

1 1
8
kt = −

Fog bank occlusion

● Plug t back into function for d2 to get
culling distance

● If d2 > 0 when t = 0, possible larger
culling distance

() ()
() ()

2
2 22

2 2 1
1

md t
t

= − − ∧
+ ∧

F C
F C

Fog bank occlusion

● Solution exists at t = 0 when k > 1

● Solution exists deeper when k < 27/16

● Take the larger distance if both exist

Fog bank occlusion

27
16k > 1k <[]27

161,k∈

Fog bank occlusion

● Strategy:

Eliminate variables
Know what functions look like
Embrace Newton’s method

Contact

● lengyel@terathon.com

● https://terathon.com/lengyel/

● @EricLengyel

https://terathon.com/lengyel/

Supplemental slides

● Bézier animation curves
● Floor and ceiling functions
● Cross product trick
● Bit manipulation tricks

Bézier animation curves

● Another note about Newton’s method

● Cubic 2D Bézier curves often used to animate
some component of an object’s transform

● Position x, y, z or rotation angle, for example

Bézier animation curves

● 2D coordinates on curve are time t and
some scalar value v

● t is not the parameter along the curve

● Big source of confusion in data exchange

Bézier animation curves

● Control points specified in (t, v) space

● Time coordinates increase monotonically

Bézier animation curves

● To evaluate the value of a curve P(s)
at a given time t, it’s necessary to find the
parameter s along the curve for which Pt(s) = t

● Requires solving a cubic polynomial

● Newton’s method perfect for this case

Bézier animation curves

● For details, see Track structure
in OpenGEX Specification

● opengex.org

http://opengex.org/

Floor and ceiling

● Not all CPUs have floating-point
floor/ceil/trunc/round instructions

● Need to implement with ordinary math

● Needs to be fast, no FP/int conversions

Floor function

● 32-bit float has 23 bits in mantissa

● Thus, any value greater than or equal to 223 is
necessarily an integer

● No bits left for any fractional part

Floor function

● Trick is to add and subtract 223

● The addition causes all fraction bits
to be shifted out the right end

● The subtraction shifts zeros back into the space
previously occupied by the fraction

Floor function

● When we add 223, the original number is
rounded to the nearest integer + 223

● If result is greater than original number, then
simply subtract one to get floor

Floor function

● What about negative numbers?

● Use the same trick, but subtract 223 first, and
then add it back

● Can combine for all possible inputs

Floor function
__m128 floor(__m128 x)

{

__m128 one = {0x3F800000};

__m128 two23 = {0x4B000000};

__m128 f = _mm_sub_ps(_mm_add_ps(f, two23), two23);

f = _mm_add_ps(_mm_sub_ps(x, two23), two23);

f = _mm_sub_ps(f, _mm_and_ps(one, _mm_cmplt_ps(x, f)));

return (f);

}

Floor function

● But wait, this fails for some very large inputs
(bigger than 223)

● All of these inputs are already integers!

● They must be if they’re bigger than 223

Floor function

● So just return the input if it’s > 223

__m128 sgn = {0x80000000};

__m128 msk = _mm_cmplt_ps(two23, _mm_andnot_ps(sgn, x));

f = _mm_or_ps(_mm_andnot_ps(msk, f), _mm_and_ps(msk, x));

Ceiling function

● Instead of subtracting one if result is greater
than input, add one if result is less than input

f = _mm_add_ps(f, _mm_and_ps(one, _mm_cmplt_ps(f, x)));

Floor and ceiling

● Strategy:

Reduce problem domain

Cross product trick

● Cross product V × W given by:

V.yzx * W.zxy − W.zxy * V.yzx

● Two mults, one sub, four shuffles

Cross product trick

● Can do this instead:

(V * W.yzx − V.yzx * W).yzx

● Two mults, one sub, three shuffles
● And same shuffle each time

Bit manipulation tricks

● Range checks
● Non-branching calculations
● Logic formulas

Integer range checks

● Integer range checks can always be done with a
single comparison:

(unsigned) (x - min) <= (unsigned) (max - min)

Non-branching calculations

● Using logic tricks to avoid branches in
integer calculations

● Many involve using sign bit in clever way

● Also useful to know −x == ~x + 1

Non-branching calculations

● Helps scheduling, increases ILP

● Reduces pollution in branch history table

● But can obfuscate code
● Use where performance is very important
● Don’t bother elsewhere

Clever uses of sign bit

● if (a < 0) ++x;

● Replace with:

● x -= a >> 31; // 32-bit ints

Right-shifting negative integers

● Shifting n-bit int right by n − 1 bits:
● All zeros for positive ints (or zero)
● All ones for negative ints

● C++ standard says a >> 31 is “implementation-
defined” if a is negative

Right-shifting negative integers

● Any sensible compiler generates instruction that
replicates sign bit

● To avoid issue in this case, could also use:

● x += (uint32) a >> 31

Predicates for 32-bit signed ints
● (x == 0) lzcnt(x) >> 5

● (x != 0) (lzcnt(x) >> 5) ^ 1

● (x < 0) (uint32) x >> 31

● (x > 0) (uint32) -x >> 31

● (x == y) lzcnt(x - y) >> 5

● (x != y) (uint32) ((x - y) | (y - x)) >> 31

● lzcnt() is leading zero count

Absolute value

● y = x >> 31

● abs(x) = (x ^ y) - y

● Because -x = ~x + 1
= x ^ 0xFFFFFFFF - 0xFFFFFFFF

Conditional negation

● Same trick can be used to negate
for any bool condition:

● if (condition) x = -x;

● x = (x ^ -condition) + condition

Logic Formulas
Formula Operation / Effect Notes

x & (x - 1) Clear lowest 1 bit. If result is 0, then x is 2n.

x | (x + 1) Set lowest 0 bit.

x | (x - 1) Set all bits to right of lowest 1 bit.

x & (x + 1) Clear all bits to right of lowest 0 bit. If result is 0, then x is 2n − 1.

x & -x Extract lowest 1 bit.

~x & (x + 1) Extract lowest 0 bit (as a 1 bit).

~x | (x - 1) Create mask for bits other than lowest 1 bit.

x | ~(x + 1) Create mask for bits other than lowest 0 bit.

x | -x Create mask for bits left of lowest 1 bit, inclusive.

x ^ -x Create mask for bits left of lowest 1 bit, exclusive.

~x | (x + 1) Create mask for bits left of lowest 0 bit, inclusive.

~x ^ (x + 1) Create mask for bits left of lowest 0 bit, exclusive. Also x ≡ (x + 1).

x ^ (x - 1) Create mask for bits right of lowest 1 bit, inclusive. 0 becomes −1.

~x & (x - 1) Create mask for bits right of lowest 1 bit, exclusive. 0 becomes −1.

x ^ (x + 1) Create mask for bits right of lowest 0 bit, inclusive. remains −1.

x & (~x - 1) Create mask for bits right of lowest 0 bit, exclusive. remains −1.

This table from “Bit Hacks for Games”, Game Engine Gems 2, A K Peters, 2011.

http://www.amazon.com/dp/1568814372/?tag=terathon-20

Contact

● lengyel@terathon.com

● https://terathon.com/lengyel/

● @EricLengyel

https://terathon.com/lengyel/

	Game Math Case Studies��Eric Lengyel, PhD�Terathon Software
	Content of this Talk
	Occlusion boxes
	Slide Number 4
	Occlusion boxes
	Occlusion boxes
	Slide Number 7
	Finite classifications
	Occlusion boxes
	Occlusion boxes
	Occlusion boxes
	Occlusion boxes
	Slide Number 13
	Occlusion boxes
	Oblique near plane trick
	Slide Number 16
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Oblique near plane trick
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Fog bank occlusion
	Contact
	Supplemental slides
	Bézier animation curves
	Bézier animation curves
	Bézier animation curves
	Slide Number 62
	Bézier animation curves
	Bézier animation curves
	Floor and ceiling
	Floor function
	Floor function
	Floor function
	Floor function
	Floor function
	Floor function
	Floor function
	Ceiling function
	Floor and ceiling
	Cross product trick
	Cross product trick
	Bit manipulation tricks
	Integer range checks
	Non-branching calculations
	Non-branching calculations
	Clever uses of sign bit
	Right-shifting negative integers
	Right-shifting negative integers
	Predicates for 32-bit signed ints
	Absolute value
	Conditional negation
	Logic Formulas
	Contact

