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About the Speaker

● Working in game/graphics dev since 1994
● Previously at Sierra, Apple, Naughty Dog

● Current projects:
● Slug Library, C4 Engine, The 31st, FGED, OpenGEX



More Information

● projectivegeometricalgebra.org

● Past GDC sessions on Grassmann algebra

● Foundations of Game Engine Development,
Volume 1: Mathematics



Outline

● Take a look at conventional math
● Pieces of a puzzle, but big picture missing

● Review of Grassmann algebra
● With some new stuff added

● New developments in geometric algebra
● Antiproducts, geometric norms, motors, flectors



Homogeneous Coordinates

● Add w coordinate to make 4D vector
● Points have w ≠ 0
● Directions have w = 0
● Allows rotation and translation to be combined 

in a single 4×4 matrix:



Homogeneous Coordinates

● “Homogeneous” means any scalar multiple
of a vector has the same geometric meaning

● Project into 3D space by intersecting with
the plane w = 1



Implicit Planes

● Four-component quantity
● n is normal vector
● d is signed distance from origin,

scaled by length of n

● Planes are also homogeneous
● Any scalar multiple is same plane



Implicit Planes



Plücker Coordinates

● Parametric form of line:

● Plücker coordinates give implicit line:



Plücker Coordinates

● v is the direction of the line
● m is the moment of the line
● Always true that
● Representation contains no information

about the points used to create the line



Direction and Moment



Plücker Coordinates

● Lots of formulas
● But little explanation

● Point
● Plane
● Line



Quaternions

● Encodes arbitrary rotation about origin:

● This is a rotation through the angle 2φ
about the unit-length axis a.



Quaternions

● Quaternions often written as

● Conjugate negates “imaginary” parts:



Quaternions

● Units i, j, and k multiply as follows:



Quaternions

● A vector v is rotated by the sandwich product:

● where v is regarded as the quaternion



Dual Quaternions

● Quaternions can rotate only about the origin
● They cannot handle translations
● Just like a 3×3 matrix

● Dual quaternions incorporate translations
● This also allows rotation about arbitrary lines
● Analogous to 4×4 matrices



Dual Quaternions

● Dual quaternion conventionally written
as a pair of quaternions:

● is the real part
● is the dual part
● ε squares to zero: 



Dual Quaternions

● A point p is transformed by a dual quaternion 
by first writing p as

● Then, the sandwich product is applied:



Hacks!

● The dual quaternion transformation
technique is an ugly hack
● We will see that points are being cast to translation 

operators, transformed, and then cast back to points

● Quaternion rotations are a lesser hack,
but still a hack
● Vectors are being cast to bivectors



Hacks!

● Conventional dual quaternion methods do not 
handle other types of objects
● Like lines and planes

● We are going to fix this and fill in some giant 
holes in the theory



What About Reflections?

● Dual quaternions give us rotations
and translations

● The full set of Euclidean isometries includes 
improper transformations
● Reflections
● Inversions
● Transflections
● Rotoreflections



Proper Euclidean Isometries



Improper Euclidean Isometries



Projective Geometric Algebra (PGA)

● A four-dimensional projective space

● Point, line, and plane representations
● With operations for combining in various ways

● Natural operations for all Euclidean isometries
● Works with everything in the algebra
● Both proper and improper transformations



Grassmann Algebra

● Also called exterior algebra
● Contains everything in the geometric algebra

● Fundamental geometric operations
● Combine geometries with join and meet operations
● Perform projection of one geometry onto another

● Isometries are part of full geometric algebra



Wedge Product

● Also known as exterior product
● Grassmann called it progressive combinatorial product

● Written with upward wedge:

● Read as “a wedge b”



Wedge Product

● The square of a vector is always zero:

● This implies that vectors anticommute:



Bivectors

● Wedge product of two vectors is a “bivector”
● Distinct from scalar or vector
● Represents an oriented 2D area

● Whereas a vector represents an oriented 1D direction



Bivectors

● A bivector is two directions and a magnitude



Trivectors

● Wedge product of three vectors is a “trivector”
● Another distinct type of object
● Represents an oriented 3D volume
● Three directions and a magnitude



Trivectors



Basis Elements in 4D Space

● Four basis vectors:

● Six basis bivectors:

● Four basis trivectors: 



Antivectors

● Vectors use basis elements having one 
dimension each:

● Antivectors use basis elements having all 
except one dimension each:



Scalars and Antiscalars

● There are two subspaces of single-component 
quantities, called scalars and antiscalars

● Scalars include no dimensions of space

● Antiscalars include all dimensions of space



Scalars and Antiscalars

● We represent the scalar basis element by
a bold number one: 1

● We represent the antiscalar basis element by
a blackboard bold number one: 1

● “Anti-one”



Grade and Antigrade

● The grade of an element is the number of 
dimensions used by its components

● The antigrade of an element is the number of 
dimensions not used by its components

● These, of course, always sum to the total 
dimension of the algebra



Basis Elements



Homogeneous Point

● Ordinary vector



Homogeneous Point

● Projection of 1D vector into subspace
at w = 1 is a 0D point



Point at Infinity

● If w coordinate is zero, then vector represents
a point at infinity in the (x, y, z) direction

● Each point at infinity exists in one direction



Homogeneous Line

● Wedge product of two points is a bivector



Homogeneous Line

● Projection of 2D bivector into subspace
at w = 1 is a 1D line



Line at Infinity

● If direction part is zero, then line lies at infinity 
in directions perpendicular to moment

● Each line at infinity exists in a plane of 
directions



Line at Infinity



Homogeneous Plane

● Wedge product of three points is a trivector



Homogeneous Plane

● Projection of 3D trivector into subspace
at w = 1 is a 2D plane



Plane at Infinity

● There is one plane at infinity
● Just like there is one point at the origin
● These are duals of each other

● The plane at infinity exists in all directions



Bulk and Weight

● Components of any object can be separated 
into two parts

● The “bulk” consists of all components that do 
not have a factor of

● The “weight” consists of all components that do 
have a factor of



Bulk and Weight

● The bulk of a is denoted by

● The weight of a is denoted by

● Any object is the sum of its bulk and weight:



Bulk and Weight

● Weight of point is its w coordinate
● Weight of line is its direction
● Weight of plane is its normal



Bulk and Weight

● The bulk contains an object’s position
● The weight contains attitude and orientation

● An object with zero bulk contains
the point at the origin

● An object with zero weight is contained by
the plane at infinity



Duality

● There is a fundamental symmetry
in geometric algebra

● We have assigned dimensionality to objects 
based on how many basis vectors are present

● Objects have another dimensionality based on 
how many basis vectors are absent



Duality

● Every object is really
two things at once
● Full space and empty space
● Grade and antigrade

● This is duality, and it’s
everywhere in GA



Duality

● A point has one full dimension

● It also has three empty dimensions

● From different perspectives, it simultaneously 
looks like a point and a plane



Duality






Dualization

● We can map basis elements so that full and 
empty dimensions are exchanged

● If we think of the dimensions used by a basis 
element as a 4-bit code, then dualization 
inverts the bits

● There are many choices for dualization 
functions, and they just differ in sign in a 
grade-dependent manner



Complements

● One choice for dualization is the
“right complement”

● The right complement of a is the
object such that

● This is also called the Hodge dual



Complements

● In 4D, right complement is not an involution

● The inverse is the “left complement”

● Right and left complements differ only in sign



Complements

● Here, the basis elements are ordered so that 
taking the complement just reverses the list 
and adjusts the sign



Attitude Extraction

● Weight contains information about attitude
● The weight complement is useful for extracting 

this information to be used another way
● Very useful for projections



Antiwedge Product

● Also known as exterior antiproduct
● Grassmann called it regressive combinatorial product

● Written with downward wedge:

● Read as “a antiwedge b”



Antiwedge Product

● Wedge product combines full dimensions
● Add grades of operands

● Antiwedge product combines empty dimensions
● Add antigrades of operands



Antiwedge Product

● Dual to wedge product

● Operates on antivectors in same way that 
wedge product operates on vectors



De Morgan’s Laws

● All operations in GA have duals that together 
satisfy De Morgan’s Laws

● For wedge and antiwedge:

● This can be taken as definition of antiwedge
● Depends on specific choice of dualization function
● Only affects orientation of some results



Join and Meet

● Wedge product combines full dimensions
● Join operation
● Analogous to union

● Antiwedge product combines empty dimensions
● Meet operation
● Analogous to intersection





Plane/Point Volume

● Wedge product of point p and plane f is

● Same as conventional dot product

● Gives signed distance between point and plane, 
scaled by weights of point and plane



Line/Line Volume

● Wedge product of two lines L1 and L2 is

● Gives signed distance
between lines, scaled by
magnitude of 



Line Crossing

● Antiwedge product gives same value as scalar
● Used to detect which way lines cross each other



Line Between Two Lines

● Line J perpendicular to lines K and L
● Can’t be produced by wedge/antiwedge product
● It does appear in the geometric product



Application: Shadow Regions

● Need convex region where shadow castors 
must be to affect scene

● Precompute lines for
frustum edges

● Find silhouette w.r.t. light
● Take wedge products with

light position



Projections

● Wedge and antiwedge products in specific 
combinations perform projections

● These are derived from “interior products”
● All projections have a uniform formula
● Interior antiproducts perform “antiprojections”



Projections



Antiprojections



Special Projections

● Point at origin and plane at infinity
produce special values



Geometric Product

● Adds more information to wedge product
● Incorporates a metric

● Allows us to make measurements
● Provides the mechanism for Euclidean isometries

● Like all operations in GA, the geometric product 
has a dual operation, or antiproduct



Geometric Product

● Conventional treatments of GA ignore
the antiproduct

● Geometric product has been expressed by plain 
old juxtaposition:

● With two products, we need an infix symbol to 
distinguish between them 



Geometric Product

● The geometric product incorporates the
wedge product and adds information to it

● So we write the geometric product as

● We read this as “a wedge-dot b”



Geometric Antiproduct

● The geometric antiproduct incorporates the 
antiwedge product and adds information to it

● So we write the geometric antiproduct as

● We read this as “a antiwedge-dot b”



Metric

● The 4D projective geometric algebra is
denoted by 3,0,1

● The subscripts mean that:
● 3 basis vectors square to +1
● 0 basis vectors square to −1
● 1 basis vector squares to 0

● The fourth dimension has no physical measure



Metric

● Metrics apply symmetrically to geometric 
product and antiproduct



Geometric Product



Geometric Antiproduct



Geometric Product and Antiproduct






Geometric Product and Antiproduct

● 1 is the multiplicative identity of the product

● 1 is the multiplicative identity of the antiproduct



Reverse

● Unary operation called “reverse” rearranges 
vector basis element factors so they’re 
multiplied in reverse order

● If this results in an odd permutation, then the 
effect is that the term is negated

● Mechanism underlying conjugate operation



Antireverse

● As with everything in GA, the reverse has
a dual operation, the “antireverse”

● The antireverse rearranges factors so that 
antivector basis elements are multiplied in 
reverse order under the antiproduct



Reverses

● The reverse of a is written 

● The antireverse of a is written



Reverses and Complements

● In GA, multiplication by 1 has long been used
to algebraically calculate a dual

● This doesn’t work in PGA because

● With only one product,
only part of the dual
gets calculated:



Reverses and Complements

● The antiproduct is necessary
for the remaining pieces
of the dual:

● Complete duals can now be written as



Reflection Through Plane

● All isometries can be broken down into 
reflections through one or more planes

● Isometries fall into two classes
● Even number of reflections: proper isometry
● Odd number of reflections: improper isometry



Fundamental Operation

● Remember, all objects are two things at once

● Reflect dual point of f through
dual plane of p:

● Reflect point p through plane f:



Fundamental Operation

● We can choose to identify objects by the 
dimensions that are absent/empty and use
the geometric product

● Or we can choose to identify objects by the 
dimensions that are present/full and use
the geometric antiproduct



Fundamental Operation

● Both methods are equally valid and
produce the same results

● We choose the second option so that
points, lines, and planes remain 1, 2, and 3 
dimensional in projective space, respectively



Reflection Through Two Planes

● Reflection through two planes
meeting at an angle φ

● Rotates about line of
intersection by 2φ



Reflection Through Two Planes

● If planes are parallel, result is a translation



Motors

● Operator that performs a general
proper Euclidean isometry
● Any combination of rotations and translations
● Product of an even number of reflections

● Portmanteau of “motion operator”
or “moment vector”



Motors

● General form:

● Transformation:



Flectors

● Operator that performs a general
improper Euclidean isometry
● Any combination of a reflection with other

rotations and translations
● Product of an odd number of reflections

● Portmanteau of “reflection operator”



Flectors

● General form:

● Transformation:



Five Types of Objects in 3,0,1

● Point
● Four vector components

● Line
● Six bivector components

● Plane
● Four trivector components



Five Types of Objects in 3,0,1

● Motor
● Eight components: scalar, bivector, antiscalar

● Flector
● Eight components: vector, trivector



Bulk and Weight

● Motors and flectors also have bulk and weight



Geometric Property

● Not every possible multivector a is
a valid geometric object

● Must satisfy
● Equivalently

● All vectors and antivectors are valid

scalar=a a¥
antiscalar=a a



¦



Geometric Property

● This imposes the following requirements



Norms

● Since there are two geometric products,
there are two different norms

● Bulk norm:

● Weight norm:



Norms

● Bulk norm is a scalar
● Weight norm is an antiscalar



Unitization

● An object is unitized when its weight norm is 1
● This happens when the coefficients satisfy the 

following conditions



Homogeneous Magnitude

● What do the norms represent?

● We add them together and get a 
scalar/antiscalar pair

● This is a homogeneous magnitude that has a 
bulk and a weight and can also be unitized!



Homogeneous Magnitude



Geometric Norm

● The geometric norm is produced by unitizing 
the homogeneous magnitude so that its weight 
(the antiscalar part) is just 1

● This gives us a concrete measurement of 
Euclidean distance



Geometric Norm



Commutators

● Four different commutators
● Combining addition or subtraction with

geometric product or antiproduct



Commutators

● All of the join and meet operations can be
done with commutators, but there’s more...

● A commutator can construct the line
between two lines

● Commutators also give Euclidean distances 
between different objects



Line Between Two Lines



Euclidean Distances



Rotation

● Reflect through plane f and then plane g

● Contains line where planes intersect
● Also contains angle information



Rotation

● Rotate about line L through angle 2φ



Translation

● Parallel planes intersect at a line at infinity
● And angle between them is zero



Motor

● All proper 3D isometries
can be described as a
screw motion

● A rotation about a line
and a displacement along
the same line

● General form of motor



Motors from Geometries



Motor to Matrix

● We eventually want to convert to a 4×4 matrix

● Not as efficient to compute sandwich products
a bunch of times

● Let M be the 4×4 matrix that we would use
to transform points



Motor to Matrix

● Define

● Then                 and



Motor Advantages

● Arbitrary rigid motion can be stored as 6 floats

● To be unitized, rotation part has unit length
● Can flip sign to make
● Then 2 2 21w x y zr r r r= − − −



Motor Advantages

● Geometric property requires

● Can solve for     when other 7 values known

● Not a coincidence that a rigid motion in
3D space has 6 degrees of freedom



Motor Advantages

● Extremely easy to invert:
● This just negates the 6 bivector components

● Easier to re-orthogonalize than 4×4 matrix
● Unitize the weight part r
● Subtract projection of bulk part u onto weight part



Motor Interpolation

● Motors interpolate a lot better than matrices

● This is used for dual quaternion skinning



Motor Interpolation

● A motor can be expressed as an exponential 
with respect to the geometric antiproduct:



Motor Interpolation

● The exponential form allows for high-quality 
interpolation, but requires a logarithm

● In practice, linear interpolation and
re-unitization are sufficient



Dual Quaternion Skinning



Reflection and Inversion

● Planes and points as isometry operators



Transflection

● A plane and a direction



Flector

● All improper 3D isometries can be described as 
a rotoreflection

● This is a rotation about a line and a reflection 
through a plane perpendicular to that line

● General form of a flector



Flector



Flector to Matrix

● Define

● Then                 and



More Information

● projectivegeometricalgebra.org

● lengyel@terathon.com

http://projectivegeometricalgebra.org/
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