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About the speaker

● Working in game/graphics dev since 1994
● Previously at Sierra, Apple, Naughty Dog

● Current projects:
● Slug Library, C4 Engine, The 31st, FGED
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About this talk

● Technical details about the “Slug” font 
rendering algorithm

● Paper published in JCGT in June 2017

● New developments in past year
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Font Rendering Ubiquity

● Text rendered everywhere in 3D applications

● GUI: Buttons, checkboxes, lists, menus, ...
● Games: Score, health, ammo, ...
● In scene: Signs, labels, computer screens, ...
● Debug info: Console, stats, timings, ...
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Font Rendering Design Goals

● Unified approach
● Same technique used to render all text

in all situations

● Runs in shader on GPU
● Fully dynamic, but also allows caching
● Can be combined with other materials
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Font Rendering Design Goals

● Total resolution independence
● No precomputed images or distance fields

● Ability to render with any transform
● Arbitrary scale, rotation, perspective

● Must look good at large and small font sizes
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Font Rendering Design Goals

● Minimal triangulation

● Don’t want lots of small triangles
● GPUs perform best with large triangles
● A fixed per-glyph vertex count is desirable
● Would like to be able to easily clip text
● Would like to apply text to curved surfaces
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Rendering Algorithm Priorities

1. Works correctly

2. Looks good

3. Runs fast
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Glyphs in TrueType

● Glyph defined by one or more closed contours

● Each contour composed of continuous
sequence of quadratic Bézier curves

● Each Bézier curve has three control points
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Glyph Space

● Glyphs are defined on em square

● Coordinates in range [0,1] inside em square

● Curves can extend outside em square 
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Glyph Space
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Winding Number

● To determine whether point inside glyph, 
calculate winding number with respect to
each contour and sum

● Point inside glyph outline if sum of winding 
numbers is nonzero
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Winding Number

● The winding number is the count of complete 
loops a contour makes around a point

● One direction (arbitrary, either CW or CCW)
is considered positive, and opposite direction
is then considered negative
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Winding Number

● To calculate winding number, fire a ray from 
point being rendered to infinity

● Direction doesn’t matter, so use +x direction 
for convenience

● Look for contour intersections along the ray
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Winding Number

● When contour crosses ray from left to right, 
increment winding number

● When contour crosses ray from right to left, 
decrement winding number

● Or other way around, as long as consistent
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Quadratic Bézier Curve

● Three control points p1, p2, p3

● Parametric curve with 0 ≤ t ≤ 1:

( ) ( ) ( )2 2
1 2 31 2 1t t t t t= − + − +C p p p
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Ray-Curve Intersection

● Translate control points so ray origin is (0,0)

● Assume ray direction is +x axis

● Solve for values of t where y coordinate of 
Bézier curve is zero
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Ray-Curve Intersection

● Let pi = (xi, yi)

● Ray intersects curve at roots of polynomial

( ) ( )2
1 2 3 1 2 12 2y y y t y y t y− + − − +

1 2 32a y y y= − + 1 2b y y= − 1c y=
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Ray-Curve Intersection

● Roots t1 and t2 given by

● If a near zero, use root of linear polynomial:

2
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Ray-Curve Intersection

● Valid intersection at ti when:
● 0 ≤ ti ≤ 1 (between curve endpoints)
● Cx(ti) ≥ 0 (at positive distance along ray)

● ti = 1 specifically disallowed
● Corresponds to intersection at ti = 0 on

next Bézier curve, and don’t want to count twice
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Ray-Curve Intersection
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Ray-Curve Intersection

● Increment or decrement winding number?

● Look at y values in range 0 ≤ ti ≤ 1
● Positive before ti or negative after ti: increment
● Negative before ti or positive after ti: decrement

● Can’t rely on derivative
● Zero if ray tangent to curve
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Robustness

● Sound from purely mathematical standpoint

● But plagued by numerical precision errors!

● Floating-point limits cause huge problems for 
roots near endpoints where ti = 0 or ti = 1
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Numerical Precision Errors

● Produce sparkle and streak artifacts

● Hacks like epsilons and coordinate perturbation 
just shift problem cases around

● Need something that’s 100% robust
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Slug Algorithm

● Calculates winding number
● Input is arbitrary set of closed contours

composed of quadratic Bézier curves

● Performs antialiasing
● Determines fractional coverage at each pixel
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Priority #1: Works Correctly

● Robust for all valid inputs
● Meaning any floating-point coordinates

that are not infinity or NaN

● No distortion of glyph outlines

● No sparkle artifacts



GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Equivalence Class Algorithm

● Infinite problem space reduced to a
finite number of equivalence classes

● Same procedure followed for all cases
in each equivalence class

● Same abstract idea as Marching Cubes
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Bézier Curve Classification

● Look at y coordinates of the
three control points

● Each positive, negative, or zero

● 27 classes based on these states
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Bézier Curve Classification

● It turns out we can do better than 27 classes

● Classify each control point based on whether
y coordinate is nonnegative or negative

● Only 8 equivalence classes
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Bézier Curve Classification

● Roots (ray intersections) always occur in same 
way for all cases in each class

● We care about places where curve transitions 
between nonnegative and negative

● Only have to decide how to modify winding 
number for each root
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Winding Number Modification

● Consider derivative of y coordinate:

( ) 2 2y t at b′ = −

1 2 32a y y y= − + 1 2b y y= −
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Winding Number Modification

● An observation about the roots for
nonzero discriminant D:

1
b Dt

a
−

= 2
b Dt

a
+

=

( )1 2y t D′ = − ( )2 2y t D′ = +

2D b ac= −
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Winding Number Modification

● Root at t1 always crosses ray from left to right
● Going from nonnegative to negative
● Always increment winding number

● Root at t2 always crosses ray from right to left
● Going from negative to nonnegative
● Always decrement winding number
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Winding Number Modification

● We can also incorporate cases where ray 
intersects an endpoint tangentially

● Winding number modified only when transition 
between nonnegative and negative occurs

● x coordinate at transition must be positive
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Class A: All Nonnegative
● Nothing happens to winding number
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Class H: All Negative
● Nothing happens to winding number
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Classes B and D: One Transition
● Winding number decremented if x(t2) > 0
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Classes E and G: One Transition
● Winding number incremented if x(t1) > 0
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Class C: Two Transitions
● Winding number incremented if x(t1) > 0
● Winding number decremented if x(t2) > 0
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Class F: Two Transitions
● Winding number incremented if x(t1) > 0
● Winding number decremented if x(t2) > 0



GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Discriminant Clamping

● In classes C and F, we could have a
negative discriminant D

● To handle with uniformity, clamp D to zero

● Always two transitions at same x coordinate, 
so guaranteed to cancel each other out
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Root Calculation
float2 SolvePoly(float4 p12, float2 p3)
{

float2 a = p12.xy − p12.zw * 2.0 + p3;    // Calculate coefficients.
float2 b = p12.xy − p12.zw;
float ra = 1.0 / a.y;
float rb = 0.5 / b.y;

float d = sqrt(max(b.y * b.y − a.y * p12.y, 0.0));   // Clamp discriminant to zero.
float t1 = (b.y − d) * ra;
float t2 = (b.y + d) * ra;

if (abs(a.y) < epsilon) t1 = t2 = p12.y * rb;    // Handle linear case where |a| ≈ 0.

// Return x coordinates at t1 and t2.
return (float2((a.x * t1 − b.x * 2.0) * t1 + p12.x,

(a.x * t2 − b.x * 2.0) * t2 + p12.x));
}
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Root Eligibility

● We know what to do for each root

● Just need to decide whether to actually do it!

● Use a lookup table for root eligibility
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Root Eligibility

● Nonnegative/negative gives us 3-bit state
● Just use sign bits of y coordinates

● Look up 2-bit root eligibilities for t1 and t2

● Total LUT size is a tiny 16 bits
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Root Eligibility Lookup Table
Class y3 < 0 y2 < 0 y1 < 0 Root 2 Root 1

A 0 0 0 0 0
B 0 0 1 1 0
C 0 1 0 1 1
D 0 1 1 1 0
E 1 0 0 0 1
F 1 0 1 1 1
G 1 1 0 0 1
H 1 1 1 0 0

0x2E 0x74
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Calculating Root Codes
uint CalcRootCode(float y1, float y2, float y3)
{

uint i1 = asuint(y1) >> 31U;
uint i2 = asuint(y2) >> 30U;
uint i3 = asuint(y3) >> 29U;

uint shift = (i2 & 2U) | (i1 & ~2U);
shift = (i3 & 4U) | (shift & ~4U);

return ((0x2E74U >> shift) & 0x0101U);
}

bool TestCurve(uint code)
{

return (code != 0U);
}

bool TestRoot1(uint code)
{

return ((code & 1U) != 0U);
}

bool TestRoot2(uint code)
{

return (code > 1U);
}
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Ternary Logic Instruction

● Recent Nvidia GPUs have a
ternary logic instruction (LOP3)

● Maps arbitrary 3-bit input to 1-bit output with 
8-bit lookup table encoded in the instruction

● Perfect fit for our algorithm!
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Ternary Logic Instruction

● Instruction not directly accessible from
pixel shader code

● Compiler can recognize arbitrary sequence of 
AND, OR, XOR, NOT operations and generate 
single ternary instruction
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Ternary Logic Instruction

● With LOP3, root code calculation requires only 
2 instructions where otherwise need at least 7

● Shader gets about 4% faster in all cases
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Root Codes with Ternary Logic
int2 CalcRootCode(float y1, float y2, float y3)
{

int a = asint(y1);
int b = asint(y2);
int c = asint(y3);

return (int2(~a & (b | c) | (~b & c),
a & (~b | ~c) | (b & ~c)));

}

bool TestCurve(int2 code)
{

return ((code.x | code.y) < 0);
}

bool TestRoot1(int2 code)
{

return (code.x < 0);
}

bool TestRoot2(int2 code)
{

return (code.y < 0);
}
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Total Winding Number
int winding = 0;
for (all Bézier curves)
{

float4 p12 = first (.xy) and second (.zw) control points
float2 p3 = third (.xy) control point

code = CalcRootCode(p12.y, p12.w, p3.y);
if (TestCurve(code))
{

float2 r = SolvePoly(p12, p3);

if ((TestRoot1(code)) && (r.x > 0.0)) winding += 1;
if ((TestRoot2(code)) && (r.y > 0.0)) winding −= 1;

}
}

if (winding != 0) then pixel is inside glyph outline
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Priority #2: Looks Good

● Performs accurate antialiasing

● Handles arbitrary transforms well

● Handles minification well
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Fractional Coverage

● Integer winding number produces simple
in/out state for each pixel

● Correct, but has jagged edges everywhere

● We need fractional pixel coverage values
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Fractional Coverage

● Ray origin is at pixel center

● Previously, we incremented or decremented 
winding number when x(ti) > 0

● Now, we add or subtract the fractional distance 
ray makes it through pixel before intersection 
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Fractional Coverage

● Let u be number of pixels per em
● Scales coordinates so that width of pixel = 1 unit

● Always change winding number (WN) by

( )( )1
2saturate iu x t⋅ +
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Fractional Coverage

● If u⋅x(ti) ≤ −0.5, then no change to WN

● If u⋅x(ti) ≥ 0.5, then WN always changed by 1

● In between, WN changed by fractional value

● Accounts for multiple curves per pixel
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Fractional Winding Number
float coverage = 0.0;
for (all Bézier curves)
{

float4 p12 = first (.xy) and second (.zw) control points
float2 p3 = third (.xy) control point

code = CalcRootCode(p12.y, p12.w, p3.y);
if (TestCurve(code))
{

float2 r = SolvePoly(p12, p3) * pixelsPerEm;

if (TestRoot1(code)) coverage += saturate(r.x + 0.5);
if (TestRoot2(code)) coverage -= saturate(r.y + 0.5);

}
}



GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Antialiasing

● This gives us excellent 1D antialiasing
● Looks great when curves are mostly vertical

● Doesn’t work well for mostly horizontal curves

● So fire a ray in the y direction, too
● Looks great when curves are mostly horizontal
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Antialiasing

● Calculate coverage for two rays at each pixel
● One in x direction, and one in y direction
● Note pixels per em could be different in x and y

● Combine two coverage values for good
2D antialiasing

● Lots of ways to calculate weighted average
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Antialiasing

● Output is linear coverage value

● Works best when blended into
sRGB framebuffer
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Bounding Box Dilation

● Draw one quad per glyph coinciding with 
glyph’s bounding box

● GPU fills pixels with centers covered by quad

● Could miss pixels on boundary with up to
50% fractional coverage value
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Bounding Box Dilation

● Must dilate bounding box by half pixel width

● In em space, dilate by 0.5 / font size

● If size dynamically change, need to estimate 
smallest on-screen pixels per em
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Minification

● At very small font sizes, lots of detail can
occur inside each pixel

● Can’t be captured by single sample position
at pixel center
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Adaptive Supersampling

● As pixels get larger in em space,
increase number of samples

● Use screen space derivatives to dynamically 
calculate sample counts for horizontal and 
vertical rays
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Adaptive Supersampling

● Example sample count calculation
● 1–4 samples per pixel in each direction

float2 emsPerPixel = fwidth(renderCoord);
int2 sampleCount = clamp(int2(emsPerPixel * 32.0 + 1.0), int2(1, 1), int2(4, 4));
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Adaptive Supersampling

Single sample Supersampling
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Priority #3: Runs Fast

● Minimize raw computation
● We want to examine as few Bézier curves

as possible in the pixel shader

● Promote high GPU resource utilization
● We want low thread divergence in the pixel shader
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Computation

● Looking for ray intersections with all
Bézier curves would be very slow

● Many curves far away from ray and never 
contribute to coverage (classes A and H)

● Need to reduce active set of curves
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Banding

● Divide glyph’s bounding box into many 
horizontal and vertical bands
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Banding

● Bézier curves are sorted into the bands
● A curve can belong to multiple bands
● When rendering, band selected based on ray origin

● Doesn’t matter how large pixel footprint gets
● Pixel size only matters in ray direction
● Band parallel to ray extends forever
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Banding

● Perfectly horizontal lines are never
added to horizontal bands

● Perfectly vertical lines are never
added to vertical bands

● Ray intersections with these can’t happen



GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Banding

● Further dividing into cells causes problems
● Pixel could cover multiple cells along ray direction
● Those cells often won’t have disjoint curve sets
● Can’t calculate final winding number without 

additional per-cell fix-ups that aren’t robust

● Bands are a much cleaner and faster solution
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Banding

● Using large numbers of bands is faster
● Allows fewer curves per band

● Minimize number of curves in worst band
● GPU thread coherence makes shader wait for 

highest number of loop iterations in a group of 
pixels (32 or 64, hardware dependent)
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Banding

● Can merge data for 
bands containing 
identical sets of 
Bézier curves
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Curve Sorting

● Curves in each horizontal band are sorted
in descending order by the maximum
x coordinate of the three control points

● This is an early-exit optimization that makes 
the shader about twice as fast compared to
not sorting curves at all
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Curve Sorting

● Translate control points so that pixel center
is at (0,0), and perform test:

● If true, then it’s not possible to hit
this curve or any that follow

● Sorted in descending order, so must also be true 
for all later curves in the band

if (max(max(p12.x, p12.z), p3.x) * pixelsPerEm.x < −0.5) break;
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Symmetric Band Optimization

● Can do even better at large font sizes

● Also sort in ascending order by minimum
x coordinate of the three control points

● Use a left-pointing ray when pixel x coordinate 
is less than a band split value
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Symmetric Band Optimization
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Symmetric Band Optimization

● Sorting and split values also apply to
vertical bands

● Splits values introduce divergence in shader
● Faster for large font sizes where lots of pixels will 

choose same execution path
● Slower for small font sizes due to decoherence
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Bounding Polygons

● Glyphs tend to have empty space near
the corners of their bounding boxes

● Clip these corners off to reduce pixels filled

● Adds more triangles, but roughly 10% faster
with larger font sizes
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Bounding Polygons
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Bounding Polygons

● As with symmetric band splits, bounding 
polygons increase performance for large font 
sizes, but can hurt at small font sizes

● Greater number of triangles increase number 
of pixels double-shaded in 2x2 quads along 
triangle edges
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Rectangle Primitives

● Even when rendering quads, double-shading 
along the interior edge can be a significant 
expense at small font sizes

● Expense can be eliminated for text that’s 
aligned to screen axes
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Rectangle Primitives

● Most GPUs support rectangle primitives
● Exposed through GL_NV_fill_rectangle extension

● Specify three vertices, and screen-aligned 
enclosing rect is drawn without internal edge

● Up to 15% faster for typical font sizes
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Rectangle Primitives

● Can be combined with conservative 
rasterization to handle glyph dilation

● Automatically shades pixels with any
amount of coverage
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Multicolor Glyphs

● Microsoft emoji font uses vector artwork
● Based on same TrueType quadratic Bézier curves

● Multiple layers composited back to front
● Adds an outer loop to the pixel shader
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Data Stored in Two Texture Maps

● Curve texture
● 4-channel 16-bit floating-point
● Stores all Bézier curve control points

● Band texture
● 4-channel 16-bit integer
● Stores lists of curves for all bands
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Curve Texture

● Third control point of one curve is always same 
as first control point of next curve in contour
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Band Texture

● Each glyph has 
list of H bands 
and V bands

● Each band 
contains list of 
curves, sorted in 
both directions
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Results

● 4K display filled with text, timed on NV GeForce 1060

Font Sample Complexity Time (ms)

Arial ABCDEFG 28 0.70

Minion ABCDEFG 35 0.71

Times ABCDEFG 35 0.73

Jokerman ABCDEFG 60 1.1

Spider ABCDEFG 500 2.8
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Results
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Results
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Results
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Questions?

● lengyel@terathon.com

● Twitter: @EricLengyel
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