
GPU-Centered Font Rendering

Directly from Glyph Outlines

Eric Lengyel, Ph.D.
Terathon Software

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

About the speaker

● Working in game/graphics dev since 1994
● Previously at Sierra, Apple, Naughty Dog

● Current projects:
● Slug Library, C4 Engine, The 31st, FGED

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

About this talk

● Technical details about the “Slug” font
rendering algorithm

● Paper published in JCGT in June 2017

● New developments in past year

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Font Rendering Ubiquity

● Text rendered everywhere in 3D applications

● GUI: Buttons, checkboxes, lists, menus, ...
● Games: Score, health, ammo, ...
● In scene: Signs, labels, computer screens, ...
● Debug info: Console, stats, timings, ...

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Font Rendering Design Goals

● Unified approach
● Same technique used to render all text

in all situations

● Runs in shader on GPU
● Fully dynamic, but also allows caching
● Can be combined with other materials

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Font Rendering Design Goals

● Total resolution independence
● No precomputed images or distance fields

● Ability to render with any transform
● Arbitrary scale, rotation, perspective

● Must look good at large and small font sizes

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Font Rendering Design Goals

● Minimal triangulation

● Don’t want lots of small triangles
● GPUs perform best with large triangles
● A fixed per-glyph vertex count is desirable
● Would like to be able to easily clip text
● Would like to apply text to curved surfaces

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Rendering Algorithm Priorities

1. Works correctly

2. Looks good

3. Runs fast

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Glyphs in TrueType

● Glyph defined by one or more closed contours

● Each contour composed of continuous
sequence of quadratic Bézier curves

● Each Bézier curve has three control points

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Glyph Space

● Glyphs are defined on em square

● Coordinates in range [0,1] inside em square

● Curves can extend outside em square

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Glyph Space

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Winding Number

● To determine whether point inside glyph,
calculate winding number with respect to
each contour and sum

● Point inside glyph outline if sum of winding
numbers is nonzero

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Winding Number

● The winding number is the count of complete
loops a contour makes around a point

● One direction (arbitrary, either CW or CCW)
is considered positive, and opposite direction
is then considered negative

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Winding Number

● To calculate winding number, fire a ray from
point being rendered to infinity

● Direction doesn’t matter, so use +x direction
for convenience

● Look for contour intersections along the ray

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Winding Number

● When contour crosses ray from left to right,
increment winding number

● When contour crosses ray from right to left,
decrement winding number

● Or other way around, as long as consistent

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Quadratic Bézier Curve

● Three control points p1, p2, p3

● Parametric curve with 0 ≤ t ≤ 1:

() () ()2 2
1 2 31 2 1t t t t t= − + − +C p p p

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Ray-Curve Intersection

● Translate control points so ray origin is (0,0)

● Assume ray direction is +x axis

● Solve for values of t where y coordinate of
Bézier curve is zero

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Ray-Curve Intersection

● Let pi = (xi, yi)

● Ray intersects curve at roots of polynomial

() ()2
1 2 3 1 2 12 2y y y t y y t y− + − − +

1 2 32a y y y= − + 1 2b y y= − 1c y=

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Ray-Curve Intersection

● Roots t1 and t2 given by

● If a near zero, use root of linear polynomial:

2

1
b b act

a
− −

=
2

2
b b act

a
+ −

=

1 2 2
ct t
b

= =

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Ray-Curve Intersection

● Valid intersection at ti when:
● 0 ≤ ti ≤ 1 (between curve endpoints)
● Cx(ti) ≥ 0 (at positive distance along ray)

● ti = 1 specifically disallowed
● Corresponds to intersection at ti = 0 on

next Bézier curve, and don’t want to count twice

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Ray-Curve Intersection

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Ray-Curve Intersection

● Increment or decrement winding number?

● Look at y values in range 0 ≤ ti ≤ 1
● Positive before ti or negative after ti: increment
● Negative before ti or positive after ti: decrement

● Can’t rely on derivative
● Zero if ray tangent to curve

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Robustness

● Sound from purely mathematical standpoint

● But plagued by numerical precision errors!

● Floating-point limits cause huge problems for
roots near endpoints where ti = 0 or ti = 1

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Numerical Precision Errors

● Produce sparkle and streak artifacts

● Hacks like epsilons and coordinate perturbation
just shift problem cases around

● Need something that’s 100% robust

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Slug Algorithm

● Calculates winding number
● Input is arbitrary set of closed contours

composed of quadratic Bézier curves

● Performs antialiasing
● Determines fractional coverage at each pixel

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Priority #1: Works Correctly

● Robust for all valid inputs
● Meaning any floating-point coordinates

that are not infinity or NaN

● No distortion of glyph outlines

● No sparkle artifacts

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Equivalence Class Algorithm

● Infinite problem space reduced to a
finite number of equivalence classes

● Same procedure followed for all cases
in each equivalence class

● Same abstract idea as Marching Cubes

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Bézier Curve Classification

● Look at y coordinates of the
three control points

● Each positive, negative, or zero

● 27 classes based on these states

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Bézier Curve Classification

● It turns out we can do better than 27 classes

● Classify each control point based on whether
y coordinate is nonnegative or negative

● Only 8 equivalence classes

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Bézier Curve Classification

● Roots (ray intersections) always occur in same
way for all cases in each class

● We care about places where curve transitions
between nonnegative and negative

● Only have to decide how to modify winding
number for each root

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Winding Number Modification

● Consider derivative of y coordinate:

() 2 2y t at b′ = −

1 2 32a y y y= − + 1 2b y y= −

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Winding Number Modification

● An observation about the roots for
nonzero discriminant D:

1
b Dt

a
−

= 2
b Dt

a
+

=

()1 2y t D′ = − ()2 2y t D′ = +

2D b ac= −

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Winding Number Modification

● Root at t1 always crosses ray from left to right
● Going from nonnegative to negative
● Always increment winding number

● Root at t2 always crosses ray from right to left
● Going from negative to nonnegative
● Always decrement winding number

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Winding Number Modification

● We can also incorporate cases where ray
intersects an endpoint tangentially

● Winding number modified only when transition
between nonnegative and negative occurs

● x coordinate at transition must be positive

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Class A: All Nonnegative
● Nothing happens to winding number

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Class H: All Negative
● Nothing happens to winding number

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Classes B and D: One Transition
● Winding number decremented if x(t2) > 0

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Classes E and G: One Transition
● Winding number incremented if x(t1) > 0

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Class C: Two Transitions
● Winding number incremented if x(t1) > 0
● Winding number decremented if x(t2) > 0

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Class F: Two Transitions
● Winding number incremented if x(t1) > 0
● Winding number decremented if x(t2) > 0

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Discriminant Clamping

● In classes C and F, we could have a
negative discriminant D

● To handle with uniformity, clamp D to zero

● Always two transitions at same x coordinate,
so guaranteed to cancel each other out

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Root Calculation
float2 SolvePoly(float4 p12, float2 p3)
{

float2 a = p12.xy − p12.zw * 2.0 + p3; // Calculate coefficients.
float2 b = p12.xy − p12.zw;
float ra = 1.0 / a.y;
float rb = 0.5 / b.y;

float d = sqrt(max(b.y * b.y − a.y * p12.y, 0.0)); // Clamp discriminant to zero.
float t1 = (b.y − d) * ra;
float t2 = (b.y + d) * ra;

if (abs(a.y) < epsilon) t1 = t2 = p12.y * rb; // Handle linear case where |a| ≈ 0.

// Return x coordinates at t1 and t2.
return (float2((a.x * t1 − b.x * 2.0) * t1 + p12.x,

(a.x * t2 − b.x * 2.0) * t2 + p12.x));
}

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Root Eligibility

● We know what to do for each root

● Just need to decide whether to actually do it!

● Use a lookup table for root eligibility

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Root Eligibility

● Nonnegative/negative gives us 3-bit state
● Just use sign bits of y coordinates

● Look up 2-bit root eligibilities for t1 and t2

● Total LUT size is a tiny 16 bits

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Root Eligibility Lookup Table
Class y3 < 0 y2 < 0 y1 < 0 Root 2 Root 1

A 0 0 0 0 0
B 0 0 1 1 0
C 0 1 0 1 1
D 0 1 1 1 0
E 1 0 0 0 1
F 1 0 1 1 1
G 1 1 0 0 1
H 1 1 1 0 0

0x2E 0x74

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Calculating Root Codes
uint CalcRootCode(float y1, float y2, float y3)
{

uint i1 = asuint(y1) >> 31U;
uint i2 = asuint(y2) >> 30U;
uint i3 = asuint(y3) >> 29U;

uint shift = (i2 & 2U) | (i1 & ~2U);
shift = (i3 & 4U) | (shift & ~4U);

return ((0x2E74U >> shift) & 0x0101U);
}

bool TestCurve(uint code)
{

return (code != 0U);
}

bool TestRoot1(uint code)
{

return ((code & 1U) != 0U);
}

bool TestRoot2(uint code)
{

return (code > 1U);
}

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Ternary Logic Instruction

● Recent Nvidia GPUs have a
ternary logic instruction (LOP3)

● Maps arbitrary 3-bit input to 1-bit output with
8-bit lookup table encoded in the instruction

● Perfect fit for our algorithm!

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Ternary Logic Instruction

● Instruction not directly accessible from
pixel shader code

● Compiler can recognize arbitrary sequence of
AND, OR, XOR, NOT operations and generate
single ternary instruction

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Ternary Logic Instruction

● With LOP3, root code calculation requires only
2 instructions where otherwise need at least 7

● Shader gets about 4% faster in all cases

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Root Codes with Ternary Logic
int2 CalcRootCode(float y1, float y2, float y3)
{

int a = asint(y1);
int b = asint(y2);
int c = asint(y3);

return (int2(~a & (b | c) | (~b & c),
a & (~b | ~c) | (b & ~c)));

}

bool TestCurve(int2 code)
{

return ((code.x | code.y) < 0);
}

bool TestRoot1(int2 code)
{

return (code.x < 0);
}

bool TestRoot2(int2 code)
{

return (code.y < 0);
}

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Total Winding Number
int winding = 0;
for (all Bézier curves)
{

float4 p12 = first (.xy) and second (.zw) control points
float2 p3 = third (.xy) control point

code = CalcRootCode(p12.y, p12.w, p3.y);
if (TestCurve(code))
{

float2 r = SolvePoly(p12, p3);

if ((TestRoot1(code)) && (r.x > 0.0)) winding += 1;
if ((TestRoot2(code)) && (r.y > 0.0)) winding −= 1;

}
}

if (winding != 0) then pixel is inside glyph outline

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Priority #2: Looks Good

● Performs accurate antialiasing

● Handles arbitrary transforms well

● Handles minification well

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Fractional Coverage

● Integer winding number produces simple
in/out state for each pixel

● Correct, but has jagged edges everywhere

● We need fractional pixel coverage values

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Fractional Coverage

● Ray origin is at pixel center

● Previously, we incremented or decremented
winding number when x(ti) > 0

● Now, we add or subtract the fractional distance
ray makes it through pixel before intersection

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Fractional Coverage

● Let u be number of pixels per em
● Scales coordinates so that width of pixel = 1 unit

● Always change winding number (WN) by

()()1
2saturate iu x t⋅ +

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Fractional Coverage

● If u⋅x(ti) ≤ −0.5, then no change to WN

● If u⋅x(ti) ≥ 0.5, then WN always changed by 1

● In between, WN changed by fractional value

● Accounts for multiple curves per pixel

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Fractional Winding Number
float coverage = 0.0;
for (all Bézier curves)
{

float4 p12 = first (.xy) and second (.zw) control points
float2 p3 = third (.xy) control point

code = CalcRootCode(p12.y, p12.w, p3.y);
if (TestCurve(code))
{

float2 r = SolvePoly(p12, p3) * pixelsPerEm;

if (TestRoot1(code)) coverage += saturate(r.x + 0.5);
if (TestRoot2(code)) coverage -= saturate(r.y + 0.5);

}
}

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Antialiasing

● This gives us excellent 1D antialiasing
● Looks great when curves are mostly vertical

● Doesn’t work well for mostly horizontal curves

● So fire a ray in the y direction, too
● Looks great when curves are mostly horizontal

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Antialiasing

● Calculate coverage for two rays at each pixel
● One in x direction, and one in y direction
● Note pixels per em could be different in x and y

● Combine two coverage values for good
2D antialiasing

● Lots of ways to calculate weighted average

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Antialiasing

● Output is linear coverage value

● Works best when blended into
sRGB framebuffer

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Bounding Box Dilation

● Draw one quad per glyph coinciding with
glyph’s bounding box

● GPU fills pixels with centers covered by quad

● Could miss pixels on boundary with up to
50% fractional coverage value

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Bounding Box Dilation

● Must dilate bounding box by half pixel width

● In em space, dilate by 0.5 / font size

● If size dynamically change, need to estimate
smallest on-screen pixels per em

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Minification

● At very small font sizes, lots of detail can
occur inside each pixel

● Can’t be captured by single sample position
at pixel center

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Adaptive Supersampling

● As pixels get larger in em space,
increase number of samples

● Use screen space derivatives to dynamically
calculate sample counts for horizontal and
vertical rays

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Adaptive Supersampling

● Example sample count calculation
● 1–4 samples per pixel in each direction

float2 emsPerPixel = fwidth(renderCoord);
int2 sampleCount = clamp(int2(emsPerPixel * 32.0 + 1.0), int2(1, 1), int2(4, 4));

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Adaptive Supersampling

Single sample Supersampling

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Priority #3: Runs Fast

● Minimize raw computation
● We want to examine as few Bézier curves

as possible in the pixel shader

● Promote high GPU resource utilization
● We want low thread divergence in the pixel shader

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Computation

● Looking for ray intersections with all
Bézier curves would be very slow

● Many curves far away from ray and never
contribute to coverage (classes A and H)

● Need to reduce active set of curves

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Banding

● Divide glyph’s bounding box into many
horizontal and vertical bands

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Banding

● Bézier curves are sorted into the bands
● A curve can belong to multiple bands
● When rendering, band selected based on ray origin

● Doesn’t matter how large pixel footprint gets
● Pixel size only matters in ray direction
● Band parallel to ray extends forever

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Banding

● Perfectly horizontal lines are never
added to horizontal bands

● Perfectly vertical lines are never
added to vertical bands

● Ray intersections with these can’t happen

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Banding

● Further dividing into cells causes problems
● Pixel could cover multiple cells along ray direction
● Those cells often won’t have disjoint curve sets
● Can’t calculate final winding number without

additional per-cell fix-ups that aren’t robust

● Bands are a much cleaner and faster solution

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Banding

● Using large numbers of bands is faster
● Allows fewer curves per band

● Minimize number of curves in worst band
● GPU thread coherence makes shader wait for

highest number of loop iterations in a group of
pixels (32 or 64, hardware dependent)

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Banding

● Can merge data for
bands containing
identical sets of
Bézier curves

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Curve Sorting

● Curves in each horizontal band are sorted
in descending order by the maximum
x coordinate of the three control points

● This is an early-exit optimization that makes
the shader about twice as fast compared to
not sorting curves at all

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Curve Sorting

● Translate control points so that pixel center
is at (0,0), and perform test:

● If true, then it’s not possible to hit
this curve or any that follow

● Sorted in descending order, so must also be true
for all later curves in the band

if (max(max(p12.x, p12.z), p3.x) * pixelsPerEm.x < −0.5) break;

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Symmetric Band Optimization

● Can do even better at large font sizes

● Also sort in ascending order by minimum
x coordinate of the three control points

● Use a left-pointing ray when pixel x coordinate
is less than a band split value

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Symmetric Band Optimization

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Symmetric Band Optimization

● Sorting and split values also apply to
vertical bands

● Splits values introduce divergence in shader
● Faster for large font sizes where lots of pixels will

choose same execution path
● Slower for small font sizes due to decoherence

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Bounding Polygons

● Glyphs tend to have empty space near
the corners of their bounding boxes

● Clip these corners off to reduce pixels filled

● Adds more triangles, but roughly 10% faster
with larger font sizes

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Bounding Polygons

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Bounding Polygons

● As with symmetric band splits, bounding
polygons increase performance for large font
sizes, but can hurt at small font sizes

● Greater number of triangles increase number
of pixels double-shaded in 2x2 quads along
triangle edges

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Rectangle Primitives

● Even when rendering quads, double-shading
along the interior edge can be a significant
expense at small font sizes

● Expense can be eliminated for text that’s
aligned to screen axes

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Rectangle Primitives

● Most GPUs support rectangle primitives
● Exposed through GL_NV_fill_rectangle extension

● Specify three vertices, and screen-aligned
enclosing rect is drawn without internal edge

● Up to 15% faster for typical font sizes

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Rectangle Primitives

● Can be combined with conservative
rasterization to handle glyph dilation

● Automatically shades pixels with any
amount of coverage

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Multicolor Glyphs

● Microsoft emoji font uses vector artwork
● Based on same TrueType quadratic Bézier curves

● Multiple layers composited back to front
● Adds an outer loop to the pixel shader

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Data Stored in Two Texture Maps

● Curve texture
● 4-channel 16-bit floating-point
● Stores all Bézier curve control points

● Band texture
● 4-channel 16-bit integer
● Stores lists of curves for all bands

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Curve Texture

● Third control point of one curve is always same
as first control point of next curve in contour

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Band Texture

● Each glyph has
list of H bands
and V bands

● Each band
contains list of
curves, sorted in
both directions

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Results

● 4K display filled with text, timed on NV GeForce 1060

Font Sample Complexity Time (ms)

Arial ABCDEFG 28 0.70

Minion ABCDEFG 35 0.71

Times ABCDEFG 35 0.73

Jokerman ABCDEFG 60 1.1

Spider ABCDEFG 500 2.8

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Results

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Results

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Results

GPU-Centered Font Rendering Directly from Glyph Outlines i3D 2018
Montréal

Questions?

● lengyel@terathon.com

● Twitter: @EricLengyel

	�GPU-Centered Font Rendering��Directly from Glyph Outlines�����Eric Lengyel, Ph.D.�Terathon Software
	About the speaker
	About this talk
	Font Rendering Ubiquity
	Slide Number 5
	Font Rendering Design Goals
	Font Rendering Design Goals
	Font Rendering Design Goals
	Rendering Algorithm Priorities
	Glyphs in TrueType
	Slide Number 11
	Glyph Space
	Glyph Space
	Winding Number
	Winding Number
	Winding Number
	Winding Number
	Slide Number 18
	Quadratic Bézier Curve
	Ray-Curve Intersection
	Ray-Curve Intersection
	Ray-Curve Intersection
	Ray-Curve Intersection
	Ray-Curve Intersection
	Ray-Curve Intersection
	Robustness
	Numerical Precision Errors
	Slug Algorithm
	Priority #1: Works Correctly
	Equivalence Class Algorithm
	Bézier Curve Classification
	Bézier Curve Classification
	Bézier Curve Classification
	Winding Number Modification
	Winding Number Modification
	Winding Number Modification
	Winding Number Modification
	Slide Number 38
	Class A: All Nonnegative
	Class H: All Negative
	Classes B and D: One Transition
	Classes E and G: One Transition
	Class C: Two Transitions
	Class F: Two Transitions
	Discriminant Clamping
	Root Calculation
	Root Eligibility
	Root Eligibility
	Root Eligibility Lookup Table
	Calculating Root Codes
	Ternary Logic Instruction
	Ternary Logic Instruction
	Ternary Logic Instruction
	Root Codes with Ternary Logic
	Total Winding Number
	Priority #2: Looks Good
	Fractional Coverage
	Slide Number 58
	Fractional Coverage
	Fractional Coverage
	Fractional Coverage
	Slide Number 62
	Fractional Winding Number
	Antialiasing
	Antialiasing
	Antialiasing
	Bounding Box Dilation
	Slide Number 68
	Bounding Box Dilation
	Minification
	Adaptive Supersampling
	Slide Number 72
	Adaptive Supersampling
	Adaptive Supersampling
	Priority #3: Runs Fast
	Computation
	Banding
	Banding
	Banding
	Banding
	Banding
	Banding
	Curve Sorting
	Curve Sorting
	Symmetric Band Optimization
	Symmetric Band Optimization
	Symmetric Band Optimization
	Bounding Polygons
	Bounding Polygons
	Bounding Polygons
	Rectangle Primitives
	Rectangle Primitives
	Rectangle Primitives
	Multicolor Glyphs
	Data Stored in Two Texture Maps
	Curve Texture
	Band Texture
	Results
	Results
	Results
	Results
	Questions?

