Optimizing Glyphs for
Real-Time Vector Rendering

Eric Lengyel, Ph.D.

Unicode Technology Workshop
Sunnyvale CA
October 22, 2024

About the Speaker

I‘-|.' BIL.U.EH rl_.l
oA 0gac
o f!-:r_ .
L Q. "~
© P

* Working in industry since 1994
* Writes books about math and real-time rendering "'-f"_’"?” jj‘:'f-'"
- Lifetime member of Unicode Consortium

* Creator of Slug Library for GPU font rendering S SER

« Computer Scientist / Mathematician '= /\ u
-3 . 2

Projective Geometric Algebra

undations — OURSE TEONOLOGY
ILL U MINA T 1)) ame En; in:‘r evelopment ame lopment Mathematlcs GAME ENGINE

for 3D, GameProgrammin
and Computer Graphic: 1

Slug Library

 Renders fonts and vector
graphics on the GPU
directly from original
Bézier curves

» Used across a wide array
of applications including
VR, CAD, games, industrial
modeling, planetariums,
video editing

Licensed Users

© B &

UBISOFT

EEEEEEEEEEEEE

WARNER BROS.
GAMES

INSOMNIAC ACTIVISION
[z8nimax y.yadobe .

COMONOLITH l.\ QUANTIC
DReEAM
7.4 HEXAGON

FIRAXIS

L TREYARCH

game

VING.NET

MARMOSET as invideo | \\ o) @l]
seen *uterra

B runway 1o KEEN
____________ A HOUSE isoac

vEED.Io . . 4 L~ S U N
| | |Mogisto g(ﬂu‘mw‘&e DAY

v disguise S K Y

Grabert

@y TOUCHDESIGNER

What Slug Does

 Ultra high quality real-time rendering
« Winding number calculation, antialiasing, dynamic bounds dilation, ...

« Advanced layout and typography
» Kerning, ligatures, combining marks
* Emoji, skin tone modifiers, hair styles, ZWJ sequences, ...

 Alternate substitutions
» Sub/superscripts, ordinals, small caps, case-sensitive forms, fractions, ...
 Lining / old style figures, tabular / proportional figures

« Contextual substitutions
 Bidirectional layout, cursive joining (Arabic), vertical layout (Japanese)

« Paragraph layout
* Indent, justification, line breaking, optional hyphens, ...

Rendering Demo

Rendering and Typographic Features

(Page 1 of 18 — Press space key to advance to next page)

Font Styles Regular italics bold {code} U &= %

Flexible mapping lets font type codes determine
primary fonts and automatic fallback fonts.

Stretch and Skew Text stretched Text skewed

Glyphs can be transformed in a variety of ways at
the character level.

Text Decorations Text underline Text strikethrough

Underline and strikethrough decorations can be
applied to any parts of the text.

TraCking Tigl’lt (tracking —0.05) L O O SE (tracking +0.05)

Tracking specifies extra space that is added or
subtracted between consecutive glyphs.

Multicolor Emoji @@LEY D e @ 49

Glyphs having multiple color layers are rendered
in the same way as ordinary glyphs.

Skin Tone Modifiers o LoV 7978 % 9

Skin tone modifiers change the colors of a
preceding human emoji glyph.

How Slug Works

 Builds a small number of triangles per glyph
* Per layer for color emoji

* Renders with a pixel shader that calculates
winding number and fractional coverage value

* Implements speed optimizations

» Solves robustness problems

Geometry Sent to GPU

« Quads with 4 vertices, 2 triangles

| "HNI " P NEFE, - . UNIRENENNENR =N
NNNNNNNI JKNMNNRNRYNNMWXNK [N[®
g NgNl \NIimmegrges iommxyge | | § =

 Or polygons with 3 to 6 vertices, 1 to 4 triangles

| "B8UL' ()°®, -, /001084887 RP 1 §<=>7
GABRCDEFCGHD § RLMNOPGRBVUVWRYR [\] & _
"abs d g f R

hﬁﬂ@&mmcpqmn@uvwmym@|@s

Winding Number Calculation

« Shoot ray from center of pixel being rendered
* Intersect with quadratic Bézier curves

Winding Number Calculation

* Math is straightforward, but direct implementation is not robust
 Suffers from floating-point precision issues

Sparkle / streaking /

artifacts

Winding Number Calculation
« Perfect, provable robustness achieved with NS
special equivalence class algorithm g L »
« Source of floating-point errors eliminated e e A A
S L
714 =
%p)‘\ | - \\p‘\

| [\

~ = T

Antialiasing

* Partial pixel coverage calculated for horizontal and vertical rays
 Results combined for final coverage value

/
— |-015 <082
e eoe—a—1»p 067
\
\

Banding

« Bézier curves grouped into bands to reduce computation
* Curves in each band are sorted max to min for early out

Glyph with 16 quadratic Bézier curves 27 7 7 6 7 5 6

Optimization Goals

* Performance
* Minimize fill area in hidden parts
 Eliminate unnecessary Bézier curves
* Minimize number of curves in worst band

* Prefer exact horizontal / vertical lines where pertinent
* These cost half as much

* Appearance
 Eliminate unwanted wiggles, cusps, concavities, stray control points
* Ensure multi-layer control point alignment in emoji

« Avoid shared boundaries for best antialiasing
* In particular, across emoji layers

Excess Control Points

« Often the case that more control points than necessary
are used in a glyph’s outline

* This degrades performance, especially if they’re clustered

* It usually degrades visual appearance as well under
extreme magnification

* Puts unnecessary pressure on GPU caches

Calibri

Visual Artifacts

* Unwanted concavities
 Discontinuous tangents
» Layer misalignments
 Tiny cusps

* These can all be highly magnified in 3D environment

Minion Pro

Comic Sans Bold

* Microscopic cusp example
* Wreaks havoc on expanded outlines

 This appears to be a case of automated boldening

ABCDEFGHIJKLMN
OPQRSTUVWXYZ
abcdefghijklmnopgrs

Tuvwxyz
123456789 +3%%

ABCDEFGHIJTKLMN
OPQRSTUVWXYZ
abcdefghijkimnopgrs
TUVWXYyZ
123456789 ¥5+4

Coincident Edges

* These cause antialiasing problems and should be avoided

« Can be eliminated by using min or max blend mode if
background is pure black or pure white

« Otherwise, usual alpha blending will over-cover background

* For emoji, antialiased edges can also have wrong color

Bahnschrift

* Variable font with overlapping components

Coincident Edges

 The antialiasing problem can be avoided by “notching”

* We'll see examples in color emoji

Hidden Geometry

* Many emoji contain geometry in background layers that
can never be seen

 This wastes space and hurts performance for no reason

 Easy fix -- just delete it

Twemoji U+01F92C

Segoe Ul Emoji U+01F927

Segoe Ul Emoji U+01F324

Excess / Sloppy Curves

* Lots of emoji have many excess control points
* Those control points often belong to ugly curves

* Fixing probably requires lots of manual adjustments

Segoe Ul Emoji U+01F60E

Segoe Ul Emoji U+01F393

Segoe Ul Emoji U+01F4AF

o

Layer Alignment

* Many emoji contain layers with misaligned control points

 Difficult to see at normal font sizes

» Easy to see when font rendered at equivalent of 5000 pt size!

* Since control points lie on integer grid, fix is simple

Segoe Ul Emoji U+01F4AA

Segoe Ul Emoji U+01F644

N

| | 4 'D//O\\\ / /‘\\\‘\’

Notching

* If two layers have coincident edges, then antialiasing
doesn’t work well

* Imagine two coincident layer boundaries covering 50% of pixel
* Final result should be 50% background color / 50% top layer color
 Actual result is 25% background / 25% bottom layer / 50% top layer

 Solution is to cut notches out of bottom layer

« Emoji fonts do this, but often sloppily

Segoe Ul Emoji U+01F389

Segoe Ul Emoji U+01F309

* Notched, but misaligned
 Also has unwanted cusps

Segoe Ul Emoji U+01F3FA

* Perfect notching

« Still has hidden geometry,
but just a little

Segoe Ul Emoji U+01F364

* When layers are adjacent, extend one beneath the other

Segoe Ul Emoji U+01F40E

 Area can be reduced

e Staircase should be one
diagonal line

» Exact horizontal line
should be preferred
for rear right leg

Segoe Ul Emoji U+01F3C4

- Excessive curves
» Bad alignment N |
* Hidden geometry
 Coincident boundaries
* Inconsistent

Optimization Summary

* Minimize number of control points
* Avoid control point clustering
* Prefer exact horizontal or vertical lines

* Prefer quadratic curves in .ttf format instead of
cubic curves in .otf format

* In emoji, keep layers with same color together
* Minimize area of polygonal bounds of each color layer

Contact

* lengyel@terathon.com
* Twitter: @EricLengyel
 Bluesky: @ericlengyel.bsky.social

* LinkedIn: www.linkedin.com/in/eric-lengyel

	Optimizing Glyphs for�Real-Time Vector Rendering
	About the Speaker
	Slug Library
	What Slug Does
	Rendering Demo
	How Slug Works
	Geometry Sent to GPU
	Winding Number Calculation
	Winding Number Calculation
	Winding Number Calculation
	Antialiasing
	Banding
	Optimization Goals
	Excess Control Points
	Calibri
	Visual Artifacts
	Minion Pro
	Comic Sans Bold
	Slide Number 19
	Slide Number 20
	Coincident Edges
	Bahnschrift
	Coincident Edges
	Hidden Geometry
	Twemoji U+01F92C
	Segoe UI Emoji U+01F927
	Segoe UI Emoji U+01F324
	Excess / Sloppy Curves
	Segoe UI Emoji U+01F60E
	Segoe UI Emoji U+01F393
	Segoe UI Emoji U+01F4AF
	Layer Alignment
	Segoe UI Emoji U+01F4AA
	Segoe UI Emoji U+01F644
	Notching
	Segoe UI Emoji U+01F389
	Segoe UI Emoji U+01F309
	Segoe UI Emoji U+01F3FA
	Segoe UI Emoji U+01F364
	Segoe UI Emoji U+01F40E
	Segoe UI Emoji U+01F3C4
	Optimization Summary
	Contact

