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* Working in industry since 1994
* Writes books about math and real-time rendering "'-f"_’"?” jj‘:'f-'"
- Lifetime member of Unicode Consortium

* Creator of Slug Library for GPU font rendering S SER
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Slug Library

 Renders fonts and vector
graphics on the GPU
directly from original
Bézier curves

» Used across a wide array
of applications including
VR, CAD, games, industrial
modeling, planetariums,
video editing
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What Slug Does

 Ultra high quality real-time rendering
« Winding number calculation, antialiasing, dynamic bounds dilation, ...

« Advanced layout and typography
» Kerning, ligatures, combining marks
* Emoji, skin tone modifiers, hair styles, ZWJ sequences, ...

 Alternate substitutions
» Sub/superscripts, ordinals, small caps, case-sensitive forms, fractions, ...
 Lining / old style figures, tabular / proportional figures

« Contextual substitutions
 Bidirectional layout, cursive joining (Arabic), vertical layout (Japanese)

« Paragraph layout
* Indent, justification, line breaking, optional hyphens, ...



Rendering Demo

Rendering and Typographic Features

(Page 1 of 18 — Press space key to advance to next page)

Font Styles Regular italics bold {code} U &= %

Flexible mapping lets font type codes determine
primary fonts and automatic fallback fonts.

Stretch and Skew Text stretched Text skewed

Glyphs can be transformed in a variety of ways at
the character level.

Text Decorations Text underline Text strikethrough

Underline and strikethrough decorations can be
applied to any parts of the text.

TraCking Tigl’lt (tracking —0.05) L O O SE (tracking +0.05)

Tracking specifies extra space that is added or
subtracted between consecutive glyphs.

Multicolor Emoji @@LEY D e @ 49

Glyphs having multiple color layers are rendered
in the same way as ordinary glyphs.

Skin Tone Modifiers o LoV 7978 % 9

Skin tone modifiers change the colors of a
preceding human emoji glyph.




How Slug Works

 Builds a small number of triangles per glyph
* Per layer for color emoji

* Renders with a pixel shader that calculates
winding number and fractional coverage value

* Implements speed optimizations

» Solves robustness problems



Geometry Sent to GPU

« Quads with 4 vertices, 2 triangles
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 Or polygons with 3 to 6 vertices, 1 to 4 triangles
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Winding Number Calculation

« Shoot ray from center of pixel being rendered
* Intersect with quadratic Bézier curves




Winding Number Calculation

* Math is straightforward, but direct implementation is not robust
 Suffers from floating-point precision issues

Sparkle / streaking /

artifacts



Winding Number Calculation
« Perfect, provable robustness achieved with NS
special equivalence class algorithm g L »
« Source of floating-point errors eliminated e e A A
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Antialiasing

* Partial pixel coverage calculated for horizontal and vertical rays
 Results combined for final coverage value
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Banding

« Bézier curves grouped into bands to reduce computation
* Curves in each band are sorted max to min for early out

Glyph with 16 quadratic Bézier curves 27 7 7 6 7 5 6




Optimization Goals

* Performance
* Minimize fill area in hidden parts
 Eliminate unnecessary Bézier curves
* Minimize number of curves in worst band

* Prefer exact horizontal / vertical lines where pertinent
* These cost half as much

* Appearance
 Eliminate unwanted wiggles, cusps, concavities, stray control points
* Ensure multi-layer control point alignment in emoji

« Avoid shared boundaries for best antialiasing
* In particular, across emoji layers



Excess Control Points

« Often the case that more control points than necessary
are used in a glyph’s outline

* This degrades performance, especially if they’re clustered

* It usually degrades visual appearance as well under
extreme magnification

* Puts unnecessary pressure on GPU caches



Calibri




Visual Artifacts

* Unwanted concavities
 Discontinuous tangents
» Layer misalignments
 Tiny cusps

* These can all be highly magnified in 3D environment




Minion Pro




Comic Sans Bold

* Microscopic cusp example
* Wreaks havoc on expanded outlines

 This appears to be a case of automated boldening




ABCDEFGHIJKLMN
OPQRSTUVWXYZ
abcdefghijklmnopgrs

Tuvwxyz
123456789 +3%%
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Coincident Edges

* These cause antialiasing problems and should be avoided

« Can be eliminated by using min or max blend mode if
background is pure black or pure white

« Otherwise, usual alpha blending will over-cover background

* For emoji, antialiased edges can also have wrong color



Bahnschrift

* Variable font with overlapping components




Coincident Edges

 The antialiasing problem can be avoided by “notching”

* We'll see examples in color emoji




Hidden Geometry

* Many emoji contain geometry in background layers that
can never be seen

 This wastes space and hurts performance for no reason

 Easy fix -- just delete it



Twemoji U+01F92C




Segoe Ul Emoji U+01F927




Segoe Ul Emoji U+01F324




Excess / Sloppy Curves

* Lots of emoji have many excess control points
* Those control points often belong to ugly curves

* Fixing probably requires lots of manual adjustments



Segoe Ul Emoji U+01F60E




Segoe Ul Emoji U+01F393




Segoe Ul Emoji U+01F4AF
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Layer Alignment

* Many emoji contain layers with misaligned control points

 Difficult to see at normal font sizes

» Easy to see when font rendered at equivalent of 5000 pt size!

* Since control points lie on integer grid, fix is simple



Segoe Ul Emoji U+01F4AA




Segoe Ul Emoji U+01F644
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Notching

* If two layers have coincident edges, then antialiasing
doesn’t work well

* Imagine two coincident layer boundaries covering 50% of pixel
* Final result should be 50% background color / 50% top layer color
 Actual result is 25% background / 25% bottom layer / 50% top layer

 Solution is to cut notches out of bottom layer

« Emoji fonts do this, but often sloppily



Segoe Ul Emoji U+01F389




Segoe Ul Emoji U+01F309

* Notched, but misaligned
 Also has unwanted cusps




Segoe Ul Emoji U+01F3FA

* Perfect notching

« Still has hidden geometry,
but just a little




Segoe Ul Emoji U+01F364

* When layers are adjacent, extend one beneath the other




Segoe Ul Emoji U+01F40E

 Area can be reduced

e Staircase should be one
diagonal line

» Exact horizontal line
should be preferred
for rear right leg




Segoe Ul Emoji U+01F3C4

- Excessive curves
» Bad alignment N |
* Hidden geometry
 Coincident boundaries
* Inconsistent




Optimization Summary

* Minimize number of control points
* Avoid control point clustering
* Prefer exact horizontal or vertical lines

* Prefer quadratic curves in .ttf format instead of
cubic curves in .otf format

* In emoji, keep layers with same color together
* Minimize area of polygonal bounds of each color layer



Contact

* lengyel@terathon.com
* Twitter: @EricLengyel
 Bluesky: @ericlengyel.bsky.social

* LinkedIn: www.linkedin.com/in/eric-lengyel
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