
An Overview of
Game Engine Architecture

Eric Lengyel, Ph.D.

Virginia Tech

November 5, 2024



Who am I?

• Virginia Tech alumnus, 1991–1996

• Lead programmer for Quest for Glory V
at Sierra, 1996–1998

• Worked on OpenGL implementation at Apple, 1999–2000

• Worked on PlayStation 3 system software
at Naughty Dog, 2004–2005

• Wrote the graphics driver for the PS3

• Running my own business called Terathon Software,
2006–present



Books / Teaching

• Written or contributed to many books about game development

• Taught real-time rendering and game engine courses at UCSC



C4 Engine

• Started in 1999

• 619 source files

• 650,000 lines of code (C++)

• Used by several PC and 
PlayStation games



• Slug is a GPU-centered font and
vector graphics rendering library



Lower level

Higher level

These interact with 
operating system

Everything else is 
platform agnostic



General Services

• Low-level services that are used throughout the engine

• Memory manager
• Special allocators optimized for specific uses
• Debugging capabilities

• File manager
• Uses native OS calls for file access

• Resource manager
• Organization into virtual folders / pack files
• Cache management

• Time manager
• Uses native OS calls to get precise timestamps



General Services

• Math library
• Vectors, points, lines, planes, matrices, quaternions, Bézier curves, 

colors, polygons, boxes, random numbers, ...

• Common utility library
• Arrays, lists, maps, trees, graphs, hash tables, strings, ...

• https://github.com/EricLengyel/Terathon-Math-Library

• https://github.com/EricLengyel/Terathon-Container-Library



Generic Data Format

• Something for config files, key bindings, import settings, ...

• Could use JSON, XML, etc.

• C4 uses the Open Data Description Language (OpenDLL)
• https://openddl.org/
• https://github.com/EricLengyel/OpenDDL

• This arose during development of the Open Game Engine 
Exchange format (OpenGEX)



System Managers

• Low-level interface with OS for various hardware access

• Thread Manager
• Handles job queues for multiple CPU cores

• Input Manager
• Takes care of keyboard, mouse, game controllers, joysticks,

steering wheels, or other kinds of USB devices

• Sound Manager
• Plays sound effects, often with 3D localization
• Streams / decompresses music

• Network Manager
• Handles low-level internet connections, often using UDP



Graphics Manager

• Provides engine-level interface to native graphics API
• Direct3D, Vulkan, OpenGL, console-specific

• Handles drawing, render state, shaders, textures, etc.

• Draws to render targets, handles postprocessing effects

• Contains camera, projection matrix setup

• Contains low-level code for light sources and shadows 



Large-Scale Architecture

• Controller system
• In charge of just about anything that moves

• Animation system
• Handles character animation, blending, morphing, skinning

• Interface manager
• All things GUI, widgets, windows, buttons, typography, ...

• Physics manager
• Rigid bodies, joints, collision detection, force fields, buoyancy, ...

• World manager
• Visibility determination, high-level scene structure



Plugins

• Tools that help with game development

• World editor

• GUI editor

• Script editor

• Shader editor

• Import code for creating textures, fonts, audio, etc.

• Import code for bringing models into world editor
• C4 uses Open Game Engine Exchange (OpenGEX) or Collada



Render Targets

• Linear depth

• Gradient

• Ambient occlusion

• Velocity

• Distortion

• Glow/bloom

• Atmosphere



Screen-Space
Ambient Occlusion



SSAO



Velocity Buffer /
Motion Blur



Atmospheric
Shadowing



Node Hierarchy



Portal Systems

• World is divided into zones

• Zones are connected by portals

• A portal is a convex polygon
• Wound CCW from front side
• One way window into neighboring zone





Visibility Regions

• Portals are clipped against planes of view frustum

• Clipped polygon is extruded to create new set of lateral planes
• Can be capped with near and far planes

• This is a convex region of space called a visibility region



Light Regions

• Portals can also be used to determine where light reaches

• Creates a tree of light regions

• Intersection with visibility regions tells us what objects to light





2D Shadow Maps



Cube Shadow Maps



Cascaded Shadow Maps



Cascaded Shadow Maps



Thread Manager

• Many processing cores available

• Divide per-frame processing into discrete jobs
• Particle systems
• Collision detection
• Rope and cloth simulation
• Character skinning
• Shadow cascades / faces

• Queue jobs on worker threads, one per core



Graphs

• Many graph structures used inside engine
• Shaders (data flow)
• Scripts (control flow)
• Node connections
• Physics contacts
• Visibility graph

• A well-designed directed graph class is extremely handy



Shader
Graph



Script Graph



Physics

• Rigid bodies

• Breakable objects

• Character controllers

• Vehicle controllers

• Projectile controllers

• Water simulation

• Rope / cloth simulation



Contact

• lengyel@terathon.com

• Twitter: @EricLengyel

• Bluesky: @ericlengyel.bsky.social

• LinkedIn: www.linkedin.com/in/eric-lengyel
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