
An Overview of
Game Engine Architecture

Eric Lengyel, Ph.D.

Virginia Tech

November 5, 2024



Who am I?

• Virginia Tech alumnus, 1991–1996

• Lead programmer for Quest for Glory V
at Sierra, 1996–1998

• Worked on OpenGL implementation at Apple, 1999–2000

• Worked on PlayStation 3 system software
at Naughty Dog, 2004–2005

• Wrote the graphics driver for the PS3

• Running my own business called Terathon Software,
2006–present



Books / Teaching

• Written or contributed to many books about game development

• Taught real-time rendering and game engine courses at UCSC



C4 Engine

• Started in 1999

• 619 source files

• 650,000 lines of code (C++)

• Used by several PC and 
PlayStation games



• Slug is a GPU-centered font and
vector graphics rendering library



Lower level

Higher level

These interact with 
operating system

Everything else is 
platform agnostic



General Services

• Low-level services that are used throughout the engine

• Memory manager
• Special allocators optimized for specific uses
• Debugging capabilities

• File manager
• Uses native OS calls for file access

• Resource manager
• Organization into virtual folders / pack files
• Cache management

• Time manager
• Uses native OS calls to get precise timestamps



General Services

• Math library
• Vectors, points, lines, planes, matrices, quaternions, Bézier curves, 

colors, polygons, boxes, random numbers, ...

• Common utility library
• Arrays, lists, maps, trees, graphs, hash tables, strings, ...

• https://github.com/EricLengyel/Terathon-Math-Library

• https://github.com/EricLengyel/Terathon-Container-Library



Generic Data Format

• Something for config files, key bindings, import settings, ...

• Could use JSON, XML, etc.

• C4 uses the Open Data Description Language (OpenDLL)
• https://openddl.org/
• https://github.com/EricLengyel/OpenDDL

• This arose during development of the Open Game Engine 
Exchange format (OpenGEX)



System Managers

• Low-level interface with OS for various hardware access

• Thread Manager
• Handles job queues for multiple CPU cores

• Input Manager
• Takes care of keyboard, mouse, game controllers, joysticks,

steering wheels, or other kinds of USB devices

• Sound Manager
• Plays sound effects, often with 3D localization
• Streams / decompresses music

• Network Manager
• Handles low-level internet connections, often using UDP



Graphics Manager

• Provides engine-level interface to native graphics API
• Direct3D, Vulkan, OpenGL, console-specific

• Handles drawing, render state, shaders, textures, etc.

• Draws to render targets, handles postprocessing effects

• Contains camera, projection matrix setup

• Contains low-level code for light sources and shadows 



Large-Scale Architecture

• Controller system
• In charge of just about anything that moves

• Animation system
• Handles character animation, blending, morphing, skinning

• Interface manager
• All things GUI, widgets, windows, buttons, typography, ...

• Physics manager
• Rigid bodies, joints, collision detection, force fields, buoyancy, ...

• World manager
• Visibility determination, high-level scene structure



Plugins

• Tools that help with game development

• World editor

• GUI editor

• Script editor

• Shader editor

• Import code for creating textures, fonts, audio, etc.

• Import code for bringing models into world editor
• C4 uses Open Game Engine Exchange (OpenGEX) or Collada



Render Targets

• Linear depth

• Gradient

• Ambient occlusion

• Velocity

• Distortion

• Glow/bloom

• Atmosphere



Screen-Space
Ambient Occlusion



SSAO



Velocity Buffer /
Motion Blur



Atmospheric
Shadowing



Node Hierarchy



Portal Systems

• World is divided into zones

• Zones are connected by portals

• A portal is a convex polygon
• Wound CCW from front side
• One way window into neighboring zone





Visibility Regions

• Portals are clipped against planes of view frustum

• Clipped polygon is extruded to create new set of lateral planes
• Can be capped with near and far planes

• This is a convex region of space called a visibility region



Light Regions

• Portals can also be used to determine where light reaches

• Creates a tree of light regions

• Intersection with visibility regions tells us what objects to light





2D Shadow Maps



Cube Shadow Maps



Cascaded Shadow Maps



Cascaded Shadow Maps



Thread Manager

• Many processing cores available

• Divide per-frame processing into discrete jobs
• Particle systems
• Collision detection
• Rope and cloth simulation
• Character skinning
• Shadow cascades / faces

• Queue jobs on worker threads, one per core



Graphs

• Many graph structures used inside engine
• Shaders (data flow)
• Scripts (control flow)
• Node connections
• Physics contacts
• Visibility graph

• A well-designed directed graph class is extremely handy



Shader
Graph



Script Graph



Physics

• Rigid bodies

• Breakable objects

• Character controllers

• Vehicle controllers

• Projectile controllers

• Water simulation

• Rope / cloth simulation



Contact

• lengyel@terathon.com

• Twitter: @EricLengyel

• Bluesky: @ericlengyel.bsky.social

• LinkedIn: www.linkedin.com/in/eric-lengyel


	An Overview of�Game Engine Architecture
	Who am I?
	Books / Teaching
	C4 Engine
	Slide Number 5
	Slide Number 6
	General Services
	General Services
	Generic Data Format
	System Managers
	Graphics Manager
	Large-Scale Architecture
	Plugins
	Render Targets
	Screen-Space�Ambient Occlusion
	SSAO
	Velocity Buffer /�Motion Blur
	Atmospheric�Shadowing
	Node Hierarchy
	Portal Systems
	Slide Number 21
	Visibility Regions
	Light Regions
	Slide Number 24
	2D Shadow Maps
	Cube Shadow Maps
	Cascaded Shadow Maps
	Cascaded Shadow Maps
	Thread Manager
	Graphs
	Shader�Graph
	Script Graph
	Physics
	Contact

